
Find the values of x and y by solving the following two equations $x+2+y+3+\sqrt{\left( x+2 \right)\left( y+3 \right)}=39$ and ${{\left( x+2 \right)}^{2}}+{{\left( y+3 \right)}^{2}}+\left( x+2 \right)\left( y+3 \right)=741$.
Answer
595.5k+ views
Hint: Since the second equation contains the square of the terms of the first equation, we will rearrange terms in the first equation and then we will square this rearranged equation. Then, we will be able to substitute the second equation in the first equation and we will get a linear equation in $x$ and $y$.
Complete step-by-step answer:
In the question, we are given two equations $x+2+y+3+\sqrt{\left( x+2 \right)\left( y+3 \right)}=39$ and ${{\left( x+2 \right)}^{2}}+{{\left( y+3 \right)}^{2}}+\left( x+2 \right)\left( y+3 \right)=741$. Let us number $x+2+y+3+\sqrt{\left( x+2 \right)\left( y+3 \right)}=39$ as equation $\left( 1 \right)$ and ${{\left( x+2 \right)}^{2}}+{{\left( y+3 \right)}^{2}}+\left( x+2 \right)\left( y+3 \right)=741$ equation $\left( 2 \right)$ respectively.
If we carefully notice both the equations i.e. equation $\left( 1 \right)$ and equation $\left( 2 \right)$, we will see that the equation $\left( 2 \right)$ contains the squared terms of the equation $\left( 1 \right)$. So let us first rearrange some terms in equation $\left( 1 \right)$ and then we will square the terms on the both sides of the equality in equation $\left( 1 \right)$.
Form equation $\left( 1 \right)$, we have,
$x+2+y+3+\sqrt{\left( x+2 \right)\left( y+3 \right)}=39$
We can also write this equation as,
$\sqrt{\left( x+2 \right)\left( y+3 \right)}=39-\left( x+2 \right)-\left( y+3 \right)$
Squaring both the sides in the above rearranged equation, we get,
${{\left( \sqrt{\left( x+2 \right)\left( y+3 \right)} \right)}^{2}}={{\left( 39-\left( x+2 \right)-\left( y+3 \right) \right)}^{2}}................\left( 3 \right)$
To solve the right side of the above equation, we have to use a formula,
${{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ac.............\left( 4 \right)$
Solving right side of equation $\left( 3 \right)$ by substituting $a=39,b=-\left( x+2 \right),c=-\left( y+3 \right)$ in equation $\left( 4 \right)$, we get,
$\begin{align}
& \left( x+2 \right)\left( y+3 \right)={{39}^{2}}+{{\left( -\left( x+2 \right) \right)}^{2}}+{{\left( -\left( y+3 \right) \right)}^{2}}+2\times 39\left( -\left( x+2 \right) \right)+2\times 39\left( -\left( y+3 \right) \right)+2\left( -\left( x+2 \right) \right)\left( -\left( y+3 \right) \right) \\
& \Rightarrow \left( x+2 \right)\left( y+3 \right)={{39}^{2}}+{{\left( x+2 \right)}^{2}}+{{\left( y+3 \right)}^{2}}-2\left( 39 \right)\left( x+2 \right)-2\left( 39 \right)\left( y+3 \right)+2\left( x+2 \right)\left( y+3 \right) \\
& \Rightarrow {{\left( x+2 \right)}^{2}}+{{\left( y+3 \right)}^{2}}+\left( x+2 \right)\left( y+3 \right)=78\left( x+2+y+3 \right)-1521 \\
& \Rightarrow {{\left( x+2 \right)}^{2}}+{{\left( y+3 \right)}^{2}}+\left( x+2 \right)\left( y+3 \right)=78\left( x+y+5 \right)-1521...........\left( 5 \right) \\
\end{align}$
Substituting ${{\left( x+2 \right)}^{2}}+{{\left( y+3 \right)}^{2}}+\left( x+2 \right)\left( y+3 \right)=741$ from equation $\left( 2 \right)$ in equation $\left( 5 \right)$, we get,
$\begin{align}
& 741=78\left( x+y+5 \right)-1521 \\
& \Rightarrow 78\left( x+y+5 \right)=2262 \\
& \Rightarrow x+y+5=29 \\
& \Rightarrow x+y=24 \\
& \Rightarrow y=24-x...........\left( 6 \right) \\
\end{align}$
Substituting $y=24-x$ from equation $\left( 6 \right)$ in equation $\left( 2 \right)$, we get,
$\begin{align}
& {{\left( x+2 \right)}^{2}}+{{\left( 24-x+3 \right)}^{2}}+\left( x+2 \right)\left( 24-x+3 \right)=741 \\
& \Rightarrow {{\left( x+2 \right)}^{2}}+{{\left( 27-x \right)}^{2}}+\left( x+2 \right)\left( 27-x \right)=741 \\
\end{align}$
We have a formula ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$. Using this formula in the above equation, we get,
$\begin{align}
& {{x}^{2}}+4+4x+729+{{x}^{2}}-54x+27x-{{x}^{2}}+54-2x=741 \\
& \Rightarrow 787-25x+{{x}^{2}}=741 \\
& \Rightarrow {{x}^{2}}-25x+46=0 \\
& \Rightarrow {{x}^{2}}-2x-23x+46=0 \\
& \Rightarrow x\left( x-2 \right)-23\left( x-2 \right)=0 \\
& \Rightarrow \left( x-23 \right)\left( x-2 \right)=0 \\
& \Rightarrow x=2,x=23...........\left( 7 \right) \\
\end{align}$
Since we got $x=2,x=23$, substituting both $x=2,x=23$ from equation $\left( 7 \right)$ in equation $\left( 6 \right)$, we get,
$\begin{align}
& y=24-2,y=24-23 \\
& \Rightarrow y=22,y=1 \\
\end{align}$
Hence, there are two possible pairs of $\left( x,y \right)$. They are $\left( 2,22 \right)$ and $\left( 23,1 \right)$.
Note: If someone wants to check whether his/her answer is correct or not, he/she can check this by substituting the obtained $\left( x,y \right)$ pairs in the equations given in the question. If those $\left( x,y \right)$ pairs satisfy the equations given in the question, this means that we have got a correct answer.
Complete step-by-step answer:
In the question, we are given two equations $x+2+y+3+\sqrt{\left( x+2 \right)\left( y+3 \right)}=39$ and ${{\left( x+2 \right)}^{2}}+{{\left( y+3 \right)}^{2}}+\left( x+2 \right)\left( y+3 \right)=741$. Let us number $x+2+y+3+\sqrt{\left( x+2 \right)\left( y+3 \right)}=39$ as equation $\left( 1 \right)$ and ${{\left( x+2 \right)}^{2}}+{{\left( y+3 \right)}^{2}}+\left( x+2 \right)\left( y+3 \right)=741$ equation $\left( 2 \right)$ respectively.
If we carefully notice both the equations i.e. equation $\left( 1 \right)$ and equation $\left( 2 \right)$, we will see that the equation $\left( 2 \right)$ contains the squared terms of the equation $\left( 1 \right)$. So let us first rearrange some terms in equation $\left( 1 \right)$ and then we will square the terms on the both sides of the equality in equation $\left( 1 \right)$.
Form equation $\left( 1 \right)$, we have,
$x+2+y+3+\sqrt{\left( x+2 \right)\left( y+3 \right)}=39$
We can also write this equation as,
$\sqrt{\left( x+2 \right)\left( y+3 \right)}=39-\left( x+2 \right)-\left( y+3 \right)$
Squaring both the sides in the above rearranged equation, we get,
${{\left( \sqrt{\left( x+2 \right)\left( y+3 \right)} \right)}^{2}}={{\left( 39-\left( x+2 \right)-\left( y+3 \right) \right)}^{2}}................\left( 3 \right)$
To solve the right side of the above equation, we have to use a formula,
${{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ac.............\left( 4 \right)$
Solving right side of equation $\left( 3 \right)$ by substituting $a=39,b=-\left( x+2 \right),c=-\left( y+3 \right)$ in equation $\left( 4 \right)$, we get,
$\begin{align}
& \left( x+2 \right)\left( y+3 \right)={{39}^{2}}+{{\left( -\left( x+2 \right) \right)}^{2}}+{{\left( -\left( y+3 \right) \right)}^{2}}+2\times 39\left( -\left( x+2 \right) \right)+2\times 39\left( -\left( y+3 \right) \right)+2\left( -\left( x+2 \right) \right)\left( -\left( y+3 \right) \right) \\
& \Rightarrow \left( x+2 \right)\left( y+3 \right)={{39}^{2}}+{{\left( x+2 \right)}^{2}}+{{\left( y+3 \right)}^{2}}-2\left( 39 \right)\left( x+2 \right)-2\left( 39 \right)\left( y+3 \right)+2\left( x+2 \right)\left( y+3 \right) \\
& \Rightarrow {{\left( x+2 \right)}^{2}}+{{\left( y+3 \right)}^{2}}+\left( x+2 \right)\left( y+3 \right)=78\left( x+2+y+3 \right)-1521 \\
& \Rightarrow {{\left( x+2 \right)}^{2}}+{{\left( y+3 \right)}^{2}}+\left( x+2 \right)\left( y+3 \right)=78\left( x+y+5 \right)-1521...........\left( 5 \right) \\
\end{align}$
Substituting ${{\left( x+2 \right)}^{2}}+{{\left( y+3 \right)}^{2}}+\left( x+2 \right)\left( y+3 \right)=741$ from equation $\left( 2 \right)$ in equation $\left( 5 \right)$, we get,
$\begin{align}
& 741=78\left( x+y+5 \right)-1521 \\
& \Rightarrow 78\left( x+y+5 \right)=2262 \\
& \Rightarrow x+y+5=29 \\
& \Rightarrow x+y=24 \\
& \Rightarrow y=24-x...........\left( 6 \right) \\
\end{align}$
Substituting $y=24-x$ from equation $\left( 6 \right)$ in equation $\left( 2 \right)$, we get,
$\begin{align}
& {{\left( x+2 \right)}^{2}}+{{\left( 24-x+3 \right)}^{2}}+\left( x+2 \right)\left( 24-x+3 \right)=741 \\
& \Rightarrow {{\left( x+2 \right)}^{2}}+{{\left( 27-x \right)}^{2}}+\left( x+2 \right)\left( 27-x \right)=741 \\
\end{align}$
We have a formula ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$. Using this formula in the above equation, we get,
$\begin{align}
& {{x}^{2}}+4+4x+729+{{x}^{2}}-54x+27x-{{x}^{2}}+54-2x=741 \\
& \Rightarrow 787-25x+{{x}^{2}}=741 \\
& \Rightarrow {{x}^{2}}-25x+46=0 \\
& \Rightarrow {{x}^{2}}-2x-23x+46=0 \\
& \Rightarrow x\left( x-2 \right)-23\left( x-2 \right)=0 \\
& \Rightarrow \left( x-23 \right)\left( x-2 \right)=0 \\
& \Rightarrow x=2,x=23...........\left( 7 \right) \\
\end{align}$
Since we got $x=2,x=23$, substituting both $x=2,x=23$ from equation $\left( 7 \right)$ in equation $\left( 6 \right)$, we get,
$\begin{align}
& y=24-2,y=24-23 \\
& \Rightarrow y=22,y=1 \\
\end{align}$
Hence, there are two possible pairs of $\left( x,y \right)$. They are $\left( 2,22 \right)$ and $\left( 23,1 \right)$.
Note: If someone wants to check whether his/her answer is correct or not, he/she can check this by substituting the obtained $\left( x,y \right)$ pairs in the equations given in the question. If those $\left( x,y \right)$ pairs satisfy the equations given in the question, this means that we have got a correct answer.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 7 English: Engaging Questions & Answers for Success

Trending doubts
Convert 40circ C to Fahrenheit A 104circ F B 107circ class 8 maths CBSE

What are the 12 elements of nature class 8 chemistry CBSE

What is the difference between rai and mustard see class 8 biology CBSE

When people say No pun intended what does that mea class 8 english CBSE

Write a letter to the Municipal Commissioner to inform class 8 english CBSE

Explain the role of the opposition party in a demo class 8 social studies CBSE


