
How do you find the values of the six trigonometric functions given $\tan \theta $ is undefined and $\pi \leqslant \theta \leqslant 2\pi $?
Answer
547.2k+ views
Hint: We have to find the values of the six trigonometric functions given $\tan \theta $ is undefined and $\pi \leqslant \theta \leqslant 2\pi $. For this, first find the angle $\theta $ for which $\tan \theta $ is undefined and $\pi \leqslant \theta \leqslant 2\pi $. Then, find other five trigonometric functions at this angle $\theta $ using trigonometric values and identities.
Formula used: $\sin \left( {\dfrac{{3\pi }}{2}} \right) = - 1$
$\cos \left( {\dfrac{{3\pi }}{2}} \right) = 0$
$\cos \left( \theta \right) \times \sec \left( \theta \right) = 1$
$\sin \left( \theta \right) \times \cos ec\left( \theta \right) = 1$
$\tan \left( \theta \right) \times \cot \left( \theta \right) = 1$
Complete step-by-step solution:
We have to find the values of the six trigonometric functions given $\tan \theta $ is undefined and $\pi \leqslant \theta \leqslant 2\pi $.
So, first we have to find the angle $\theta $ for which $\tan \theta $ is undefined and $\pi \leqslant \theta \leqslant 2\pi $.
We know that $\tan \theta $ is undefined for $\theta = \dfrac{\pi }{2}$.
But $\theta \in \left[ {\pi ,2\pi } \right]$.
So, we can find the angle $\theta $ by adding $\dfrac{\pi }{2}$ to $\pi $ or subtracting $\dfrac{\pi }{2}$ from $2\pi $.
$\theta = \pi + \dfrac{\pi }{2}$
$ \Rightarrow \theta = \dfrac{{3\pi }}{2}$
Now, we will find the other five trigonometric functions on $\theta = \dfrac{{3\pi }}{2}$.
Since, $\sin \left( {\dfrac{{3\pi }}{2}} \right) = - 1$.
$ \Rightarrow \sin \left( \theta \right) = \sin \left( {\dfrac{{3\pi }}{2}} \right) = - 1$
Since, $\cos \left( {\dfrac{{3\pi }}{2}} \right) = 0$.
$ \Rightarrow \cos \left( \theta \right) = \cos \left( {\dfrac{{3\pi }}{2}} \right) = 0$
Now, using trigonometry identity $\cos \left( \theta \right) \times \sec \left( \theta \right) = 1$, we get
$ \Rightarrow \sec \left( \theta \right) = \dfrac{1}{{\cos \left( \theta \right)}} = \dfrac{1}{0}$ = undefined
Now, using trigonometry identity $\sin \left( \theta \right) \times \cos ec\left( \theta \right) = 1$, we get
$ \Rightarrow \cos ec\left( \theta \right) = \dfrac{1}{{\sin \left( \theta \right)}} = \dfrac{1}{{ - 1}} = - 1$
Now, using trigonometry identity $\tan \left( \theta \right) \times \cot \left( \theta \right) = 1$, we get
$\cot \left( \theta \right) = \dfrac{1}{{\tan \left( \theta \right)}} = \dfrac{0}{1} = 0$
Final solution: Therefore, $\sin \left( \theta \right) = - 1$, $\cos \left( \theta \right) = 0$, $\sec \left( \theta \right) = $ undefined, $\cos ec\left( \theta \right) = - 1$ and $\cot \left( \theta \right) = 0$.
Additional information: Trigonometric identity: An equation involving trigonometric ratios of an angle $\theta $ (say) is said to be a trigonometric identity if it is satisfied for all values of $\theta $ for which the given trigonometric ratios are defined.
For example, ${\cos ^2}\theta - \dfrac{1}{2}\cos \theta = \cos \theta \left( {\cos \theta - \dfrac{1}{2}} \right)$ is a trigonometric identity, whereas $\cos \theta \left( {\cos \theta - \dfrac{1}{2}} \right) = 0$ is an equation.
Also, $\sec \theta = \dfrac{1}{{\cos \theta }}$ is a trigonometric identity, because it holds for all values of $\theta $ except for which $\cos \theta = 0$. For $\cos \theta = 0$, $\sec \theta $ is not defined.
Note: We can directly find the trigonometric functions using trigonometric identities:
${\sin ^2}\theta + {\cos ^2}\theta = 1$.........…(1)
${\sec ^2}\theta - {\tan ^2}\theta = 1$.........…(2)
$\cos e{c^2}\theta - {\cot ^2}\theta = 1$………...(3)
So, first we can determine $\sec \theta $ using trigonometry identity (2).
${\sec ^2}\theta = 1 + {\tan ^2}\theta $
$ \Rightarrow \sec \theta = \pm \sqrt {1 + {{\tan }^2}\theta } $
Since, $\tan \theta $ is undefined. So, $\tan \theta = \dfrac{1}{0}$.
$ \Rightarrow \sec \left( \theta \right) = $ undefined
Now, using trigonometry identity $\cos \left( \theta \right) \times \sec \left( \theta \right) = 1$, we get
$\cos \left( \theta \right) = \dfrac{1}{{\sec \left( \theta \right)}} = \dfrac{0}{1} = 0$
Now, we can determine $\sin \theta $ using trigonometry identity (1).
${\sin ^2}\theta + {\cos ^2}\theta = 1$
$ \Rightarrow \sin \theta = \pm \sqrt {1 - {{\cos }^2}\theta } $
$ \Rightarrow \sin \theta = \pm \sqrt {1 - 0} $
$ \Rightarrow \sin \theta = \pm 1$
Since, $\pi \leqslant \theta \leqslant 2\pi $.
$ \Rightarrow \sin \theta = - 1$
Now, using trigonometry identity $\sin \left( \theta \right) \times \cos ec\left( \theta \right) = 1$, we get
$ \Rightarrow \cos ec\left( \theta \right) = \dfrac{1}{{\sin \left( \theta \right)}} = \dfrac{1}{{ - 1}} = - 1$
Now, using trigonometry identity $\tan \left( \theta \right) \times \cot \left( \theta \right) = 1$, we get
$\cot \left( \theta \right) = \dfrac{1}{{\tan \left( \theta \right)}} = \dfrac{0}{1} = 0$
Therefore, $\sin \left( \theta \right) = - 1$, $\cos \left( \theta \right) = 0$, $\sec \left( \theta \right) = $ undefined, $\cos ec\left( \theta \right) = - 1$ and $\cot \left( \theta \right) = 0$.
Formula used: $\sin \left( {\dfrac{{3\pi }}{2}} \right) = - 1$
$\cos \left( {\dfrac{{3\pi }}{2}} \right) = 0$
$\cos \left( \theta \right) \times \sec \left( \theta \right) = 1$
$\sin \left( \theta \right) \times \cos ec\left( \theta \right) = 1$
$\tan \left( \theta \right) \times \cot \left( \theta \right) = 1$
Complete step-by-step solution:
We have to find the values of the six trigonometric functions given $\tan \theta $ is undefined and $\pi \leqslant \theta \leqslant 2\pi $.
So, first we have to find the angle $\theta $ for which $\tan \theta $ is undefined and $\pi \leqslant \theta \leqslant 2\pi $.
We know that $\tan \theta $ is undefined for $\theta = \dfrac{\pi }{2}$.
But $\theta \in \left[ {\pi ,2\pi } \right]$.
So, we can find the angle $\theta $ by adding $\dfrac{\pi }{2}$ to $\pi $ or subtracting $\dfrac{\pi }{2}$ from $2\pi $.
$\theta = \pi + \dfrac{\pi }{2}$
$ \Rightarrow \theta = \dfrac{{3\pi }}{2}$
Now, we will find the other five trigonometric functions on $\theta = \dfrac{{3\pi }}{2}$.
Since, $\sin \left( {\dfrac{{3\pi }}{2}} \right) = - 1$.
$ \Rightarrow \sin \left( \theta \right) = \sin \left( {\dfrac{{3\pi }}{2}} \right) = - 1$
Since, $\cos \left( {\dfrac{{3\pi }}{2}} \right) = 0$.
$ \Rightarrow \cos \left( \theta \right) = \cos \left( {\dfrac{{3\pi }}{2}} \right) = 0$
Now, using trigonometry identity $\cos \left( \theta \right) \times \sec \left( \theta \right) = 1$, we get
$ \Rightarrow \sec \left( \theta \right) = \dfrac{1}{{\cos \left( \theta \right)}} = \dfrac{1}{0}$ = undefined
Now, using trigonometry identity $\sin \left( \theta \right) \times \cos ec\left( \theta \right) = 1$, we get
$ \Rightarrow \cos ec\left( \theta \right) = \dfrac{1}{{\sin \left( \theta \right)}} = \dfrac{1}{{ - 1}} = - 1$
Now, using trigonometry identity $\tan \left( \theta \right) \times \cot \left( \theta \right) = 1$, we get
$\cot \left( \theta \right) = \dfrac{1}{{\tan \left( \theta \right)}} = \dfrac{0}{1} = 0$
Final solution: Therefore, $\sin \left( \theta \right) = - 1$, $\cos \left( \theta \right) = 0$, $\sec \left( \theta \right) = $ undefined, $\cos ec\left( \theta \right) = - 1$ and $\cot \left( \theta \right) = 0$.
Additional information: Trigonometric identity: An equation involving trigonometric ratios of an angle $\theta $ (say) is said to be a trigonometric identity if it is satisfied for all values of $\theta $ for which the given trigonometric ratios are defined.
For example, ${\cos ^2}\theta - \dfrac{1}{2}\cos \theta = \cos \theta \left( {\cos \theta - \dfrac{1}{2}} \right)$ is a trigonometric identity, whereas $\cos \theta \left( {\cos \theta - \dfrac{1}{2}} \right) = 0$ is an equation.
Also, $\sec \theta = \dfrac{1}{{\cos \theta }}$ is a trigonometric identity, because it holds for all values of $\theta $ except for which $\cos \theta = 0$. For $\cos \theta = 0$, $\sec \theta $ is not defined.
Note: We can directly find the trigonometric functions using trigonometric identities:
${\sin ^2}\theta + {\cos ^2}\theta = 1$.........…(1)
${\sec ^2}\theta - {\tan ^2}\theta = 1$.........…(2)
$\cos e{c^2}\theta - {\cot ^2}\theta = 1$………...(3)
So, first we can determine $\sec \theta $ using trigonometry identity (2).
${\sec ^2}\theta = 1 + {\tan ^2}\theta $
$ \Rightarrow \sec \theta = \pm \sqrt {1 + {{\tan }^2}\theta } $
Since, $\tan \theta $ is undefined. So, $\tan \theta = \dfrac{1}{0}$.
$ \Rightarrow \sec \left( \theta \right) = $ undefined
Now, using trigonometry identity $\cos \left( \theta \right) \times \sec \left( \theta \right) = 1$, we get
$\cos \left( \theta \right) = \dfrac{1}{{\sec \left( \theta \right)}} = \dfrac{0}{1} = 0$
Now, we can determine $\sin \theta $ using trigonometry identity (1).
${\sin ^2}\theta + {\cos ^2}\theta = 1$
$ \Rightarrow \sin \theta = \pm \sqrt {1 - {{\cos }^2}\theta } $
$ \Rightarrow \sin \theta = \pm \sqrt {1 - 0} $
$ \Rightarrow \sin \theta = \pm 1$
Since, $\pi \leqslant \theta \leqslant 2\pi $.
$ \Rightarrow \sin \theta = - 1$
Now, using trigonometry identity $\sin \left( \theta \right) \times \cos ec\left( \theta \right) = 1$, we get
$ \Rightarrow \cos ec\left( \theta \right) = \dfrac{1}{{\sin \left( \theta \right)}} = \dfrac{1}{{ - 1}} = - 1$
Now, using trigonometry identity $\tan \left( \theta \right) \times \cot \left( \theta \right) = 1$, we get
$\cot \left( \theta \right) = \dfrac{1}{{\tan \left( \theta \right)}} = \dfrac{0}{1} = 0$
Therefore, $\sin \left( \theta \right) = - 1$, $\cos \left( \theta \right) = 0$, $\sec \left( \theta \right) = $ undefined, $\cos ec\left( \theta \right) = - 1$ and $\cot \left( \theta \right) = 0$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

