
Find the values of \[\sqrt{4+3\sqrt{20i}}\].
A. \[\sqrt{5}+2i\]
B. \[3+\sqrt{5}i\]
C. \[1+\sqrt{5}i\]
D. \[\sqrt{5}i-2i\]
Answer
607.5k+ views
Hint: In the above question we have to find the square root of \[\left( 4+3\sqrt{20i} \right)\] which is a complex number. So we will suppose a complex number \[{{z}^{2}}={{\left( x+yi \right)}^{2}}=4+3\sqrt{20i}\] and on comparing real parts and imaginary parts. We will find the required values.
Complete step-by-step answer:
We have been given to find the values of \[\sqrt{4+3\sqrt{20i}}\].
We have to find the square root of \[\left( 4+3\sqrt{20i} \right)\].
Let us suppose \[{{z}^{2}}={{\left( x+yi \right)}^{2}}=4+3\sqrt{20i}\].
On using the identity \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\], we get as follows:
\[\begin{align}
& \Rightarrow {{x}^{2}}+2xyi+{{\left( yi \right)}^{2}}=4+3\sqrt{20i} \\
& \Rightarrow {{x}^{2}}+\left( 2xy \right)i-{{y}^{2}}=4+3\sqrt{20i} \\
\end{align}\]
Since \[{{i}^{2}}=-1\], on rearranging the terms, we get as follows:
\[\Rightarrow \left( {{x}^{2}}-{{y}^{2}} \right)+\left( 2xy \right)i=4+3\sqrt{20i}\]
On comparing real parts and imaginary parts of the above equation, we get as follows:
\[\begin{align}
& {{x}^{2}}-{{y}^{2}}=4.....(1) \\
& 2xy=3\sqrt{20}.....(2) \\
\end{align}\]
Now, consider the modulus: \[{{\left| z \right|}^{2}}=\left| {{z}^{2}} \right|\].
Since \[\left| z \right|=\sqrt{{{x}^{2}}+{{y}^{2}}}\] for \[\left( x+iy \right)\]
\[\Rightarrow \left| {{z}^{2}} \right|={{x}^{2}}+{{y}^{2}}\]
For \[\sqrt{4+3\sqrt{20i}}\] we have,
\[\begin{align}
& \left| {{z}^{2}} \right|=\sqrt{{{\left( 4 \right)}^{2}}+{{\left( 3\sqrt{20i} \right)}^{2}}}=\sqrt{16+180}=\sqrt{196} \\
& \Rightarrow {{x}^{2}}+{{y}^{2}}=\sqrt{196} \\
& \Rightarrow {{x}^{2}}+{{y}^{2}}=14.....(3) \\
\end{align}\]
Solving (1) and (3) we get as follows:
\[\begin{align}
& {{x}^{2}}-{{y}^{2}}+{{x}^{2}}+{{y}^{2}}=4+14 \\
& 2{{x}^{2}}=18 \\
& {{x}^{2}}=\dfrac{18}{2} \\
& {{x}^{2}}=9 \\
\end{align}\]
Taking square root on both the sides of the equation, we get as follows:
\[x=\pm 3\]
For x=3, substitute x=3 in equation (2) we get as follows:
\[\begin{align}
& 2\times 3\times y=3\sqrt{20} \\
& \Rightarrow 2y=\sqrt{20} \\
& \Rightarrow y=\dfrac{\sqrt{20}}{2} \\
& \Rightarrow y=\sqrt{5} \\
\end{align}\]
For x=3, substitute x=-3 in equation (2) we get as follows:
\[\begin{align}
& 2\times \left( -3 \right)\times y=3\sqrt{20} \\
& \Rightarrow -2y=\sqrt{20} \\
& \Rightarrow y=\dfrac{-1}{2}\times \sqrt{20} \\
& \Rightarrow y=-\sqrt{5} \\
\end{align}\]
Hence, \[x+iy=\pm \left( 3+\sqrt{5i} \right)\]
Therefore, the correct answer of the given question is option B.
Note: Be careful while doing calculation and also take care of the sign while calculation. Also we can use the direct formula to find the square root of a complex number which is given by as follows:
\[a\pm bi=\pm \sqrt{\left( {{a}^{2}}-{{b}^{2}} \right)\pm 2abi}\].
Complete step-by-step answer:
We have been given to find the values of \[\sqrt{4+3\sqrt{20i}}\].
We have to find the square root of \[\left( 4+3\sqrt{20i} \right)\].
Let us suppose \[{{z}^{2}}={{\left( x+yi \right)}^{2}}=4+3\sqrt{20i}\].
On using the identity \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\], we get as follows:
\[\begin{align}
& \Rightarrow {{x}^{2}}+2xyi+{{\left( yi \right)}^{2}}=4+3\sqrt{20i} \\
& \Rightarrow {{x}^{2}}+\left( 2xy \right)i-{{y}^{2}}=4+3\sqrt{20i} \\
\end{align}\]
Since \[{{i}^{2}}=-1\], on rearranging the terms, we get as follows:
\[\Rightarrow \left( {{x}^{2}}-{{y}^{2}} \right)+\left( 2xy \right)i=4+3\sqrt{20i}\]
On comparing real parts and imaginary parts of the above equation, we get as follows:
\[\begin{align}
& {{x}^{2}}-{{y}^{2}}=4.....(1) \\
& 2xy=3\sqrt{20}.....(2) \\
\end{align}\]
Now, consider the modulus: \[{{\left| z \right|}^{2}}=\left| {{z}^{2}} \right|\].
Since \[\left| z \right|=\sqrt{{{x}^{2}}+{{y}^{2}}}\] for \[\left( x+iy \right)\]
\[\Rightarrow \left| {{z}^{2}} \right|={{x}^{2}}+{{y}^{2}}\]
For \[\sqrt{4+3\sqrt{20i}}\] we have,
\[\begin{align}
& \left| {{z}^{2}} \right|=\sqrt{{{\left( 4 \right)}^{2}}+{{\left( 3\sqrt{20i} \right)}^{2}}}=\sqrt{16+180}=\sqrt{196} \\
& \Rightarrow {{x}^{2}}+{{y}^{2}}=\sqrt{196} \\
& \Rightarrow {{x}^{2}}+{{y}^{2}}=14.....(3) \\
\end{align}\]
Solving (1) and (3) we get as follows:
\[\begin{align}
& {{x}^{2}}-{{y}^{2}}+{{x}^{2}}+{{y}^{2}}=4+14 \\
& 2{{x}^{2}}=18 \\
& {{x}^{2}}=\dfrac{18}{2} \\
& {{x}^{2}}=9 \\
\end{align}\]
Taking square root on both the sides of the equation, we get as follows:
\[x=\pm 3\]
For x=3, substitute x=3 in equation (2) we get as follows:
\[\begin{align}
& 2\times 3\times y=3\sqrt{20} \\
& \Rightarrow 2y=\sqrt{20} \\
& \Rightarrow y=\dfrac{\sqrt{20}}{2} \\
& \Rightarrow y=\sqrt{5} \\
\end{align}\]
For x=3, substitute x=-3 in equation (2) we get as follows:
\[\begin{align}
& 2\times \left( -3 \right)\times y=3\sqrt{20} \\
& \Rightarrow -2y=\sqrt{20} \\
& \Rightarrow y=\dfrac{-1}{2}\times \sqrt{20} \\
& \Rightarrow y=-\sqrt{5} \\
\end{align}\]
Hence, \[x+iy=\pm \left( 3+\sqrt{5i} \right)\]
Therefore, the correct answer of the given question is option B.
Note: Be careful while doing calculation and also take care of the sign while calculation. Also we can use the direct formula to find the square root of a complex number which is given by as follows:
\[a\pm bi=\pm \sqrt{\left( {{a}^{2}}-{{b}^{2}} \right)\pm 2abi}\].
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

