
Find the values and then prove the expression ${{\cos }^{-1}}\left( \dfrac{12}{13} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\sin }^{-1}}\left( \dfrac{56}{65} \right)$
Answer
609.6k+ views
Hint: We will apply the trigonometric formula $\cos \left( \theta \right)=\dfrac{\text{Base}}{\text{Hypotenuse}}$ and $\sin \left( a \right)=\dfrac{\text{Perpendicular}}{\text{Hypotenuse}}$ to prove the expression. Also, we will use Pythagoras theorem here.
Complete step-by-step answer:
${{\cos }^{-1}}\left( \dfrac{12}{13} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\sin }^{-1}}\left( \dfrac{56}{65} \right)$
$\begin{align}
& {{\cos }^{-1}}\left( \dfrac{12}{13} \right)=a \\
& \Rightarrow \left( \dfrac{12}{13} \right)=\cos \left( a \right) \\
\end{align}$
Since, we know that $\cos \left( \theta \right)=\dfrac{\text{Base}}{\text{Hypotenuse}}$. Therefore we can have 12 as a base and 13 as a hypotenuse of a right angled triangle as shown below. Therefore, we have
So, by Pythagoras theorem we have
$\begin{align}
& {{\left( 13 \right)}^{2}}={{\left( 12 \right)}^{2}}+{{x}^{2}} \\
& \Rightarrow {{\left( 13 \right)}^{2}}-{{\left( 12 \right)}^{2}}={{x}^{2}} \\
& \Rightarrow 169-144={{x}^{2}} \\
& \Rightarrow {{x}^{2}}=25 \\
& \Rightarrow x=5 \\
\end{align}$
Now this x = 5 is the value of perpendicular. Therefore, we can find the value of $\sin \left( a \right)=\dfrac{\text{Perpendicular}}{\text{Hypotenuse}}$. Since, perpendicular is 5 units and hypotenuse is 13. Therefore, we have $\sin \left( a \right)=\dfrac{5}{13}$.
Now we will consider ${{\sin }^{-1}}\left( \dfrac{3}{5} \right)=b$. By taking the inverse sine operator to the right side of the equation we have $\left( \dfrac{3}{5} \right)=\sin \left( b \right)$. Since, we know that $\sin \left( a \right)=\dfrac{\text{Perpendicular}}{\text{Hypotenuse}}$. Therefore we can have 3 as perpendicular and 5 as a hypotenuse of a right angled triangle as shown below. Therefore, we have
So, by Pythagoras theorem we have
$\begin{align}
& {{\left( 5 \right)}^{2}}={{\left( 3 \right)}^{2}}+{{y}^{2}} \\
& \Rightarrow {{\left( 5 \right)}^{2}}-{{\left( 3 \right)}^{2}}={{y}^{2}} \\
& \Rightarrow {{y}^{2}}=25-9 \\
& \Rightarrow {{y}^{2}}=16 \\
& \Rightarrow y=\pm 4 \\
\end{align}$
Since the side cannot be negative therefore we have y = 4. Now this side BC will work as a base of the triangle. Thus, we can find the value of $\cos \left( b \right)=\dfrac{\text{Base}}{\text{Hypotenuse}}$. Since, the base is now 4 units and the hypotenuse is 5 units therefore we get $\cos \left( b \right)=\dfrac{4}{5}$.
Now we will apply the formula $\sin \left( a+b \right)=\sin \left( a \right)\cos \left( b \right)+\cos \left( a \right)\sin \left( b \right)$. Now by substituting the values in this formula we have
$\begin{align}
& \sin \left( a+b \right)=\dfrac{5}{13}\times \dfrac{4}{5}+\dfrac{12}{13}\times \dfrac{3}{5} \\
& \Rightarrow \sin \left( a+b \right)=\dfrac{20}{65}+\dfrac{36}{65} \\
& \Rightarrow \sin \left( a+b \right)=\dfrac{56}{65} \\
\end{align}$
Now we will take the sine operation to the right side of the equation. Therefore, we get $\begin{align}
& \sin \left( a+b \right)=\dfrac{56}{65} \\
& \Rightarrow a+b={{\sin }^{-1}}\left( \dfrac{56}{65} \right) \\
\end{align}$
As we know that the values of a and b are given as ${{\cos }^{-1}}\left( \dfrac{12}{13} \right)=a$ and ${{\sin }^{-1}}\left( \dfrac{3}{5} \right)=b$. Therefore, by substituting the values in the expression $a+b={{\sin }^{-1}}\left( \dfrac{56}{65} \right)$. Therefore we get ${{\cos }^{-1}}\left( \dfrac{12}{13} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\sin }^{-1}}\left( \dfrac{56}{65} \right)$.
Hence, the expression ${{\cos }^{-1}}\left( \dfrac{12}{13} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\sin }^{-1}}\left( \dfrac{56}{65} \right)$ is proved.
Note: We could have solved it by an alternate method. In this method we can solve it as $\begin{align}
& {{\cos }^{-1}}\left( \dfrac{12}{13} \right)=a \\
& \Rightarrow \left( \dfrac{12}{13} \right)=\cos \left( a \right) \\
\end{align}$
By using the trigonometry identity here which is given by ${{\cos }^{2}}\left( a \right)+{{\sin }^{2}}\left( a \right)=1$. This results in ${{\sin }^{2}}\left( a \right)=1-{{\cos }^{2}}\left( a \right)$. Therefore we have
$\begin{align}
& {{\sin }^{2}}\left( a \right)=1-{{\cos }^{2}}\left( a \right) \\
& \Rightarrow {{\sin }^{2}}\left( a \right)=1-{{\left( \dfrac{12}{13} \right)}^{2}} \\
& \Rightarrow {{\sin }^{2}}\left( a \right)=1-\dfrac{144}{169} \\
& \Rightarrow {{\sin }^{2}}\left( a \right)=\dfrac{169-144}{169} \\
& \Rightarrow {{\sin }^{2}}\left( a \right)=\dfrac{25}{169} \\
& \Rightarrow \sin \left( a \right)=\dfrac{5}{13} \\
\end{align}$
Similarly, we can solve the remaining by this formula and get the desired proof.
Complete step-by-step answer:
${{\cos }^{-1}}\left( \dfrac{12}{13} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\sin }^{-1}}\left( \dfrac{56}{65} \right)$
$\begin{align}
& {{\cos }^{-1}}\left( \dfrac{12}{13} \right)=a \\
& \Rightarrow \left( \dfrac{12}{13} \right)=\cos \left( a \right) \\
\end{align}$
Since, we know that $\cos \left( \theta \right)=\dfrac{\text{Base}}{\text{Hypotenuse}}$. Therefore we can have 12 as a base and 13 as a hypotenuse of a right angled triangle as shown below. Therefore, we have
So, by Pythagoras theorem we have
$\begin{align}
& {{\left( 13 \right)}^{2}}={{\left( 12 \right)}^{2}}+{{x}^{2}} \\
& \Rightarrow {{\left( 13 \right)}^{2}}-{{\left( 12 \right)}^{2}}={{x}^{2}} \\
& \Rightarrow 169-144={{x}^{2}} \\
& \Rightarrow {{x}^{2}}=25 \\
& \Rightarrow x=5 \\
\end{align}$
Now this x = 5 is the value of perpendicular. Therefore, we can find the value of $\sin \left( a \right)=\dfrac{\text{Perpendicular}}{\text{Hypotenuse}}$. Since, perpendicular is 5 units and hypotenuse is 13. Therefore, we have $\sin \left( a \right)=\dfrac{5}{13}$.
Now we will consider ${{\sin }^{-1}}\left( \dfrac{3}{5} \right)=b$. By taking the inverse sine operator to the right side of the equation we have $\left( \dfrac{3}{5} \right)=\sin \left( b \right)$. Since, we know that $\sin \left( a \right)=\dfrac{\text{Perpendicular}}{\text{Hypotenuse}}$. Therefore we can have 3 as perpendicular and 5 as a hypotenuse of a right angled triangle as shown below. Therefore, we have
So, by Pythagoras theorem we have
$\begin{align}
& {{\left( 5 \right)}^{2}}={{\left( 3 \right)}^{2}}+{{y}^{2}} \\
& \Rightarrow {{\left( 5 \right)}^{2}}-{{\left( 3 \right)}^{2}}={{y}^{2}} \\
& \Rightarrow {{y}^{2}}=25-9 \\
& \Rightarrow {{y}^{2}}=16 \\
& \Rightarrow y=\pm 4 \\
\end{align}$
Since the side cannot be negative therefore we have y = 4. Now this side BC will work as a base of the triangle. Thus, we can find the value of $\cos \left( b \right)=\dfrac{\text{Base}}{\text{Hypotenuse}}$. Since, the base is now 4 units and the hypotenuse is 5 units therefore we get $\cos \left( b \right)=\dfrac{4}{5}$.
Now we will apply the formula $\sin \left( a+b \right)=\sin \left( a \right)\cos \left( b \right)+\cos \left( a \right)\sin \left( b \right)$. Now by substituting the values in this formula we have
$\begin{align}
& \sin \left( a+b \right)=\dfrac{5}{13}\times \dfrac{4}{5}+\dfrac{12}{13}\times \dfrac{3}{5} \\
& \Rightarrow \sin \left( a+b \right)=\dfrac{20}{65}+\dfrac{36}{65} \\
& \Rightarrow \sin \left( a+b \right)=\dfrac{56}{65} \\
\end{align}$
Now we will take the sine operation to the right side of the equation. Therefore, we get $\begin{align}
& \sin \left( a+b \right)=\dfrac{56}{65} \\
& \Rightarrow a+b={{\sin }^{-1}}\left( \dfrac{56}{65} \right) \\
\end{align}$
As we know that the values of a and b are given as ${{\cos }^{-1}}\left( \dfrac{12}{13} \right)=a$ and ${{\sin }^{-1}}\left( \dfrac{3}{5} \right)=b$. Therefore, by substituting the values in the expression $a+b={{\sin }^{-1}}\left( \dfrac{56}{65} \right)$. Therefore we get ${{\cos }^{-1}}\left( \dfrac{12}{13} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\sin }^{-1}}\left( \dfrac{56}{65} \right)$.
Hence, the expression ${{\cos }^{-1}}\left( \dfrac{12}{13} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\sin }^{-1}}\left( \dfrac{56}{65} \right)$ is proved.
Note: We could have solved it by an alternate method. In this method we can solve it as $\begin{align}
& {{\cos }^{-1}}\left( \dfrac{12}{13} \right)=a \\
& \Rightarrow \left( \dfrac{12}{13} \right)=\cos \left( a \right) \\
\end{align}$
By using the trigonometry identity here which is given by ${{\cos }^{2}}\left( a \right)+{{\sin }^{2}}\left( a \right)=1$. This results in ${{\sin }^{2}}\left( a \right)=1-{{\cos }^{2}}\left( a \right)$. Therefore we have
$\begin{align}
& {{\sin }^{2}}\left( a \right)=1-{{\cos }^{2}}\left( a \right) \\
& \Rightarrow {{\sin }^{2}}\left( a \right)=1-{{\left( \dfrac{12}{13} \right)}^{2}} \\
& \Rightarrow {{\sin }^{2}}\left( a \right)=1-\dfrac{144}{169} \\
& \Rightarrow {{\sin }^{2}}\left( a \right)=\dfrac{169-144}{169} \\
& \Rightarrow {{\sin }^{2}}\left( a \right)=\dfrac{25}{169} \\
& \Rightarrow \sin \left( a \right)=\dfrac{5}{13} \\
\end{align}$
Similarly, we can solve the remaining by this formula and get the desired proof.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

