
Find the value of x, y and z if
\[\left\{ 5\left[ \begin{matrix}
1 \\
0 \\
1 \\
\end{matrix}\text{ }\begin{matrix}
0 \\
1 \\
1 \\
\end{matrix} \right]-3\left[ \begin{matrix}
1 \\
-2 \\
3 \\
\end{matrix}\text{ }\begin{matrix}
2 \\
3 \\
1 \\
\end{matrix} \right] \right\}\left[ \begin{matrix}
2 \\
1 \\
\end{matrix} \right]=\left[ \begin{matrix}
x+1 \\
y-1 \\
2z \\
\end{matrix} \right]\]
Answer
587.1k+ views
Hint: To find value of x, y and z we will compare matrices at LHS and RHS of above expression. To do so, first we will arrange the LHS by making it a single matrix. 5 and 3 can be multiplied inside using $k\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]=\left[ \begin{matrix}
ka & kb \\
kc & kd \\
\end{matrix} \right]$ and then both matrices can be added or subtracted term wise to obtain a single matrix. Then, we will use matrix multiplication to finally form a last matrix at LHS then comparing to RHS given is result.
Complete step by step answer:
We will first open the matrix, we have the LHS of given expression as
\[\left\{ 5\left[ \begin{matrix}
1 \\
0 \\
1 \\
\end{matrix}\text{ }\begin{matrix}
0 \\
1 \\
1 \\
\end{matrix} \right]-3\left[ \begin{matrix}
1 \\
-2 \\
3 \\
\end{matrix}\text{ }\begin{matrix}
2 \\
3 \\
1 \\
\end{matrix} \right] \right\}\left[ \begin{matrix}
2 \\
1 \\
\end{matrix} \right]\]
Now, matrix multiplication by scalar is done as given below:
\[k\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]=\left[ \begin{matrix}
ka & kb \\
kc & kd \\
\end{matrix} \right]\]
Where $\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]$ is a matrix and k is a scalar.
That is, scalar is multiplied to each term of matrix.
Applying this in above matrix where 5 is scalar of matrix $\left[ \begin{matrix}
1 \\
0 \\
1 \\
\end{matrix}\text{ }\begin{matrix}
0 \\
1 \\
1 \\
\end{matrix} \right]$ and +3 is scalar of matrix $\left[ \begin{matrix}
1 \\
-2 \\
3 \\
\end{matrix}\text{ }\begin{matrix}
2 \\
3 \\
1 \\
\end{matrix} \right]$ we get:
\[\begin{align}
& \text{LHS}=\left\{ 5\left[ \begin{matrix}
1 \\
0 \\
1 \\
\end{matrix}\text{ }\begin{matrix}
0 \\
1 \\
1 \\
\end{matrix} \right]-\left( 3 \right)\left[ \begin{matrix}
1 \\
-2 \\
3 \\
\end{matrix}\text{ }\begin{matrix}
2 \\
3 \\
1 \\
\end{matrix} \right] \right\}\left[ \begin{matrix}
2 \\
1 \\
\end{matrix} \right] \\
& \text{LHS}=\left\{ \left[ \begin{matrix}
5 \\
0 \\
5 \\
\end{matrix}\text{ }\begin{matrix}
0 \\
5 \\
5 \\
\end{matrix} \right]-\left[ \begin{matrix}
3 \\
-6 \\
9 \\
\end{matrix}\text{ }\begin{matrix}
6 \\
9 \\
1 \\
\end{matrix} \right] \right\}\left[ \begin{matrix}
2 \\
1 \\
\end{matrix} \right] \\
\end{align}\]
Now, addition or subtraction is done term wise as given below:
\[\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]+\left[ \begin{matrix}
e & f \\
g & h \\
\end{matrix} \right]=\left[ \begin{matrix}
a+e & b+f \\
c+g & d+h \\
\end{matrix} \right]\]
Where $\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]\text{ and }\left[ \begin{matrix}
e & f \\
g & h \\
\end{matrix} \right]$ are matrices of $2\times 2$ order.
Applying this in above we get:
\[\begin{align}
& \text{LHS}=\left\{ \left[ \begin{matrix}
5-3 \\
0+6 \\
5-9 \\
\end{matrix}\text{ }\begin{matrix}
0-6 \\
5-9 \\
5-1 \\
\end{matrix} \right] \right\}\left[ \begin{matrix}
2 \\
1 \\
\end{matrix} \right] \\
& \text{LHS}=\left\{ \left[ \begin{matrix}
2 \\
6 \\
-4 \\
\end{matrix}\text{ }\begin{matrix}
-6 \\
-4 \\
4 \\
\end{matrix} \right] \right\}\left[ \begin{matrix}
2 \\
1 \\
\end{matrix} \right] \\
\end{align}\]
So, finally we are left with multiplication of above obtained matrix.
Matrix multiplication is done as below:
\[\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]\cdot \left[ \begin{matrix}
e & f \\
g & h \\
\end{matrix} \right]=\left[ \begin{matrix}
ae+bg & af+bh \\
ce+dg & cf+dh \\
\end{matrix} \right]\]
That is, multiplying the term wise of a row with corresponding column of the second matrix and adding them.
Here $\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]\text{ and }\left[ \begin{matrix}
e & f \\
g & h \\
\end{matrix} \right]$ are matrices of $2\times 2$ order.
Applying this matrix multiplication method to our question, we get:
\[\begin{align}
& \text{LHS}=\left[ \begin{matrix}
2 \\
6 \\
-4 \\
\end{matrix}\text{ }\begin{matrix}
-6 \\
-4 \\
4 \\
\end{matrix} \right]\left[ \begin{matrix}
2 \\
1 \\
\end{matrix} \right] \\
& \text{LHS}=\left[ \begin{matrix}
2\times 2+(-6)\times 1 \\
6\times 2+\left( -4 \right)\times 1 \\
-4\times 2+4\times 1 \\
\end{matrix} \right] \\
& \text{LHS}=\left[ \begin{matrix}
-2 \\
8 \\
-4 \\
\end{matrix} \right] \\
\end{align}\]
Comparing this obtained LHS by our given RHS we get:
\[\left[ \begin{matrix}
-2 \\
8 \\
-4 \\
\end{matrix} \right]=\left[ \begin{matrix}
x+1 \\
y-1 \\
2z \\
\end{matrix} \right]=\left[ \begin{matrix}
-2 \\
8 \\
-4 \\
\end{matrix} \right]\]
Comparing each term we get:
\[\begin{align}
& -2=x+1,8=y-1\text{ and }-4=2z \\
& \Rightarrow x+1=-2 \\
& x=-2-1 \\
& x=-3 \\
& \Rightarrow y-1=8 \\
& y=8+1 \\
& y=9 \\
& \Rightarrow 2z=-4 \\
& z=\dfrac{-4}{2}=-2 \\
\end{align}\]
Hence, value of x = -3, y = 9 and z = -2
Note: The key point to note here is that, the above given are matrices not determinants. Matrices are represented as $\left[ {} \right]$ and determinants as $\left| {} \right|$ If any scalar term is multiplied then it is multiplied to each and every term of a matrix, but if it is a determinant then that scalar is only multiplied to one row or column and not all. Here, we have a matrix, so we have multiplied 5 and 3 to each and every element inside.
a & b \\
c & d \\
\end{matrix} \right]=\left[ \begin{matrix}
ka & kb \\
kc & kd \\
\end{matrix} \right]$ and then both matrices can be added or subtracted term wise to obtain a single matrix. Then, we will use matrix multiplication to finally form a last matrix at LHS then comparing to RHS given is result.
Complete step by step answer:
We will first open the matrix, we have the LHS of given expression as
\[\left\{ 5\left[ \begin{matrix}
1 \\
0 \\
1 \\
\end{matrix}\text{ }\begin{matrix}
0 \\
1 \\
1 \\
\end{matrix} \right]-3\left[ \begin{matrix}
1 \\
-2 \\
3 \\
\end{matrix}\text{ }\begin{matrix}
2 \\
3 \\
1 \\
\end{matrix} \right] \right\}\left[ \begin{matrix}
2 \\
1 \\
\end{matrix} \right]\]
Now, matrix multiplication by scalar is done as given below:
\[k\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]=\left[ \begin{matrix}
ka & kb \\
kc & kd \\
\end{matrix} \right]\]
Where $\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]$ is a matrix and k is a scalar.
That is, scalar is multiplied to each term of matrix.
Applying this in above matrix where 5 is scalar of matrix $\left[ \begin{matrix}
1 \\
0 \\
1 \\
\end{matrix}\text{ }\begin{matrix}
0 \\
1 \\
1 \\
\end{matrix} \right]$ and +3 is scalar of matrix $\left[ \begin{matrix}
1 \\
-2 \\
3 \\
\end{matrix}\text{ }\begin{matrix}
2 \\
3 \\
1 \\
\end{matrix} \right]$ we get:
\[\begin{align}
& \text{LHS}=\left\{ 5\left[ \begin{matrix}
1 \\
0 \\
1 \\
\end{matrix}\text{ }\begin{matrix}
0 \\
1 \\
1 \\
\end{matrix} \right]-\left( 3 \right)\left[ \begin{matrix}
1 \\
-2 \\
3 \\
\end{matrix}\text{ }\begin{matrix}
2 \\
3 \\
1 \\
\end{matrix} \right] \right\}\left[ \begin{matrix}
2 \\
1 \\
\end{matrix} \right] \\
& \text{LHS}=\left\{ \left[ \begin{matrix}
5 \\
0 \\
5 \\
\end{matrix}\text{ }\begin{matrix}
0 \\
5 \\
5 \\
\end{matrix} \right]-\left[ \begin{matrix}
3 \\
-6 \\
9 \\
\end{matrix}\text{ }\begin{matrix}
6 \\
9 \\
1 \\
\end{matrix} \right] \right\}\left[ \begin{matrix}
2 \\
1 \\
\end{matrix} \right] \\
\end{align}\]
Now, addition or subtraction is done term wise as given below:
\[\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]+\left[ \begin{matrix}
e & f \\
g & h \\
\end{matrix} \right]=\left[ \begin{matrix}
a+e & b+f \\
c+g & d+h \\
\end{matrix} \right]\]
Where $\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]\text{ and }\left[ \begin{matrix}
e & f \\
g & h \\
\end{matrix} \right]$ are matrices of $2\times 2$ order.
Applying this in above we get:
\[\begin{align}
& \text{LHS}=\left\{ \left[ \begin{matrix}
5-3 \\
0+6 \\
5-9 \\
\end{matrix}\text{ }\begin{matrix}
0-6 \\
5-9 \\
5-1 \\
\end{matrix} \right] \right\}\left[ \begin{matrix}
2 \\
1 \\
\end{matrix} \right] \\
& \text{LHS}=\left\{ \left[ \begin{matrix}
2 \\
6 \\
-4 \\
\end{matrix}\text{ }\begin{matrix}
-6 \\
-4 \\
4 \\
\end{matrix} \right] \right\}\left[ \begin{matrix}
2 \\
1 \\
\end{matrix} \right] \\
\end{align}\]
So, finally we are left with multiplication of above obtained matrix.
Matrix multiplication is done as below:
\[\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]\cdot \left[ \begin{matrix}
e & f \\
g & h \\
\end{matrix} \right]=\left[ \begin{matrix}
ae+bg & af+bh \\
ce+dg & cf+dh \\
\end{matrix} \right]\]
That is, multiplying the term wise of a row with corresponding column of the second matrix and adding them.
Here $\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]\text{ and }\left[ \begin{matrix}
e & f \\
g & h \\
\end{matrix} \right]$ are matrices of $2\times 2$ order.
Applying this matrix multiplication method to our question, we get:
\[\begin{align}
& \text{LHS}=\left[ \begin{matrix}
2 \\
6 \\
-4 \\
\end{matrix}\text{ }\begin{matrix}
-6 \\
-4 \\
4 \\
\end{matrix} \right]\left[ \begin{matrix}
2 \\
1 \\
\end{matrix} \right] \\
& \text{LHS}=\left[ \begin{matrix}
2\times 2+(-6)\times 1 \\
6\times 2+\left( -4 \right)\times 1 \\
-4\times 2+4\times 1 \\
\end{matrix} \right] \\
& \text{LHS}=\left[ \begin{matrix}
-2 \\
8 \\
-4 \\
\end{matrix} \right] \\
\end{align}\]
Comparing this obtained LHS by our given RHS we get:
\[\left[ \begin{matrix}
-2 \\
8 \\
-4 \\
\end{matrix} \right]=\left[ \begin{matrix}
x+1 \\
y-1 \\
2z \\
\end{matrix} \right]=\left[ \begin{matrix}
-2 \\
8 \\
-4 \\
\end{matrix} \right]\]
Comparing each term we get:
\[\begin{align}
& -2=x+1,8=y-1\text{ and }-4=2z \\
& \Rightarrow x+1=-2 \\
& x=-2-1 \\
& x=-3 \\
& \Rightarrow y-1=8 \\
& y=8+1 \\
& y=9 \\
& \Rightarrow 2z=-4 \\
& z=\dfrac{-4}{2}=-2 \\
\end{align}\]
Hence, value of x = -3, y = 9 and z = -2
Note: The key point to note here is that, the above given are matrices not determinants. Matrices are represented as $\left[ {} \right]$ and determinants as $\left| {} \right|$ If any scalar term is multiplied then it is multiplied to each and every term of a matrix, but if it is a determinant then that scalar is only multiplied to one row or column and not all. Here, we have a matrix, so we have multiplied 5 and 3 to each and every element inside.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

