
Find the value of x, if:
${{\tan }^{-1}}\dfrac{x-2}{x-1}+{{\tan }^{-1}}\dfrac{x+2}{x+1}=\dfrac{\pi }{4}.$
Answer
584.1k+ views
Hint: We will use the formula for ${{\tan }^{-1}}A+{{\tan }^{-1}}B$ , which is given by ${{\tan }^{-1}}A+{{\tan }^{-1}}B={{\tan }^{-1}}\left( \dfrac{A+B}{1-AB} \right)$. The terms in the LHS of the question can be expanded using this formula. We have to substitute \[A=\dfrac{x-2}{x-1}\ and\ B=\dfrac{x+2}{x+1}\] in the above formula to expand the terms given in the question. After that, we will equate the result to the RHS, i.e. \[\dfrac{\pi }{4}\]. Then we can take tan on both sides. After doing this, we will end up with a quadratic equation in x which can be solved to get the value of x.
Complete step-by-step solution -
Given that;
${{\tan }^{-1}}\dfrac{x-2}{x-1}+{{\tan }^{-1}}\dfrac{x+2}{x+1}=\dfrac{\pi }{4}.$…………………. (1)
And, we have to find the value of x so that it will satisfy this equation.
We know that;
${{\tan }^{-1}}A+{{\tan }^{-1}}B={{\tan }^{-1}}\left( \dfrac{A+B}{1-AB} \right)$
Applying this formula in our question, we get;
$\begin{align}
& {{\tan }^{-1}}\left( \dfrac{x-2}{x-1} \right)+{{\tan }^{-1}}\left( \dfrac{x+2}{x+1} \right)={{\tan }^{-1}}\dfrac{\left( \left( \dfrac{x-2}{x-1} \right)+\left( \dfrac{x+2}{x+1} \right) \right)}{\left( 1-\left( \dfrac{x-2}{x-1} \right).\left( \dfrac{x+2}{x+1} \right) \right)} \\
& {{\tan }^{-1}}\left( \dfrac{x-2}{x-1} \right)+{{\tan }^{-1}}\left( \dfrac{x+2}{x+1} \right)={{\tan }^{-1}}\dfrac{\dfrac{\left( x-2 \right)\left( x+1 \right)+\left( x+2 \right)\left( x-1 \right)}{\left( x-1 \right)\left( x+1 \right)}}{1-\dfrac{{{x}^{2}}-{{\left( 2 \right)}^{2}}}{{{\left( x \right)}^{2}}-1}} \\
\end{align}$
As we know;
\[\begin{align}
& {{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) \\
& ={{\tan }^{-1}}\left( \dfrac{x-2}{x-1} \right)+{{\tan }^{-1}}\left( \dfrac{x+2}{x+1} \right)={{\tan }^{-1}}\dfrac{\dfrac{\left( x-2 \right)\left( x+1 \right)+\left( x+2 \right)\left( x-1 \right)}{{{\left( x \right)}^{2}}-{{\left( 1 \right)}^{2}}}}{\dfrac{{{x}^{2}}-1-{{x}^{2}}+4}{{{\left( x \right)}^{2}}-{{\left( 1 \right)}^{2}}}} \\
\end{align}\]
Cancelling the similar terms, we get;
\[{{\tan }^{-1}}\left( \dfrac{x-2}{x-1} \right)+{{\tan }^{-1}}\left( \dfrac{x+2}{x+1} \right)={{\tan }^{-1}}\left\{ \dfrac{\left( x-2 \right)\left( x+1 \right)+\left( x+2 \right)\left( x-1 \right)}{3} \right\}\]
Putting the value of;
\[{{\tan }^{-1}}\left( \dfrac{x-2}{x-1} \right)+{{\tan }^{-1}}\left( \dfrac{x+2}{x+1} \right)={{\tan }^{-1}}\left\{ \dfrac{\left( x-2 \right)\left( x+1 \right)+\left( x+2 \right)\left( x-1 \right)}{3} \right\}\]
in the equation (1), we get;
\[={{\tan }^{-1}}\left\{ \dfrac{\left( x-2 \right)\left( x+1 \right)+\left( x+2 \right)\left( x-1 \right)}{3} \right\}=\dfrac{\pi }{4}\]
Transposing \[{{\tan }^{-1}}\]from LHS to RHS, we get;
\[=\dfrac{\left( x-2 \right)\left( x+1 \right)+\left( x+2 \right)\left( x-1 \right)}{3}=\tan \left( \dfrac{\pi }{4} \right)\]………….. (2)
We know the value of \[\tan \dfrac{\pi }{4}=1\].
Putting the value of \[\tan \left( \dfrac{\pi }{4} \right)=1\]in equation (2), we get;
\[\begin{align}
& =\dfrac{\left( x-2 \right)\left( x+1 \right)+\left( x+2 \right)\left( x-1 \right)}{3}=1 \\
& =\left( x-2 \right)\left( x+1 \right)+\left( x+2 \right)\left( x-1 \right)=3 \\
& ={{x}^{2}}+x-2x-2+{{x}^{2}}-x+2x-2=3 \\
& ={{x}^{2}}+{{x}^{2}}+x-x-2x+2x-4=3 \\
\end{align}\]
Cancelling the similar terms, we get;
$\begin{align}
& =2{{x}^{2}}-4=3 \\
& =2{{x}^{2}}=3+4 \\
& =2{{x}^{2}}=7 \\
& ={{x}^{2}}=\dfrac{7}{2} \\
& =x=\pm \sqrt{\dfrac{7}{2}} \\
\end{align}$
Note: Many time students confuse with the formula
${{\tan }^{-1}}A+{{\tan }^{-1}}B={{\tan }^{-1}}\left( \dfrac{A+B}{1-AB} \right)\ or\ {{\tan }^{-1}}A-{{\tan }^{-1}}B={{\tan }^{-1}}\left( \dfrac{A-B}{1+AB} \right)$.
Because of minus signs as a result they take wrong formula which leads to the formation of wrong answers. Therefore, it is recommended to know all the formulas to solve such problems quickly. It is also recommended to go through step by step inorder to avoid any silly mistakes.
Complete step-by-step solution -
Given that;
${{\tan }^{-1}}\dfrac{x-2}{x-1}+{{\tan }^{-1}}\dfrac{x+2}{x+1}=\dfrac{\pi }{4}.$…………………. (1)
And, we have to find the value of x so that it will satisfy this equation.
We know that;
${{\tan }^{-1}}A+{{\tan }^{-1}}B={{\tan }^{-1}}\left( \dfrac{A+B}{1-AB} \right)$
Applying this formula in our question, we get;
$\begin{align}
& {{\tan }^{-1}}\left( \dfrac{x-2}{x-1} \right)+{{\tan }^{-1}}\left( \dfrac{x+2}{x+1} \right)={{\tan }^{-1}}\dfrac{\left( \left( \dfrac{x-2}{x-1} \right)+\left( \dfrac{x+2}{x+1} \right) \right)}{\left( 1-\left( \dfrac{x-2}{x-1} \right).\left( \dfrac{x+2}{x+1} \right) \right)} \\
& {{\tan }^{-1}}\left( \dfrac{x-2}{x-1} \right)+{{\tan }^{-1}}\left( \dfrac{x+2}{x+1} \right)={{\tan }^{-1}}\dfrac{\dfrac{\left( x-2 \right)\left( x+1 \right)+\left( x+2 \right)\left( x-1 \right)}{\left( x-1 \right)\left( x+1 \right)}}{1-\dfrac{{{x}^{2}}-{{\left( 2 \right)}^{2}}}{{{\left( x \right)}^{2}}-1}} \\
\end{align}$
As we know;
\[\begin{align}
& {{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) \\
& ={{\tan }^{-1}}\left( \dfrac{x-2}{x-1} \right)+{{\tan }^{-1}}\left( \dfrac{x+2}{x+1} \right)={{\tan }^{-1}}\dfrac{\dfrac{\left( x-2 \right)\left( x+1 \right)+\left( x+2 \right)\left( x-1 \right)}{{{\left( x \right)}^{2}}-{{\left( 1 \right)}^{2}}}}{\dfrac{{{x}^{2}}-1-{{x}^{2}}+4}{{{\left( x \right)}^{2}}-{{\left( 1 \right)}^{2}}}} \\
\end{align}\]
Cancelling the similar terms, we get;
\[{{\tan }^{-1}}\left( \dfrac{x-2}{x-1} \right)+{{\tan }^{-1}}\left( \dfrac{x+2}{x+1} \right)={{\tan }^{-1}}\left\{ \dfrac{\left( x-2 \right)\left( x+1 \right)+\left( x+2 \right)\left( x-1 \right)}{3} \right\}\]
Putting the value of;
\[{{\tan }^{-1}}\left( \dfrac{x-2}{x-1} \right)+{{\tan }^{-1}}\left( \dfrac{x+2}{x+1} \right)={{\tan }^{-1}}\left\{ \dfrac{\left( x-2 \right)\left( x+1 \right)+\left( x+2 \right)\left( x-1 \right)}{3} \right\}\]
in the equation (1), we get;
\[={{\tan }^{-1}}\left\{ \dfrac{\left( x-2 \right)\left( x+1 \right)+\left( x+2 \right)\left( x-1 \right)}{3} \right\}=\dfrac{\pi }{4}\]
Transposing \[{{\tan }^{-1}}\]from LHS to RHS, we get;
\[=\dfrac{\left( x-2 \right)\left( x+1 \right)+\left( x+2 \right)\left( x-1 \right)}{3}=\tan \left( \dfrac{\pi }{4} \right)\]………….. (2)
We know the value of \[\tan \dfrac{\pi }{4}=1\].
Putting the value of \[\tan \left( \dfrac{\pi }{4} \right)=1\]in equation (2), we get;
\[\begin{align}
& =\dfrac{\left( x-2 \right)\left( x+1 \right)+\left( x+2 \right)\left( x-1 \right)}{3}=1 \\
& =\left( x-2 \right)\left( x+1 \right)+\left( x+2 \right)\left( x-1 \right)=3 \\
& ={{x}^{2}}+x-2x-2+{{x}^{2}}-x+2x-2=3 \\
& ={{x}^{2}}+{{x}^{2}}+x-x-2x+2x-4=3 \\
\end{align}\]
Cancelling the similar terms, we get;
$\begin{align}
& =2{{x}^{2}}-4=3 \\
& =2{{x}^{2}}=3+4 \\
& =2{{x}^{2}}=7 \\
& ={{x}^{2}}=\dfrac{7}{2} \\
& =x=\pm \sqrt{\dfrac{7}{2}} \\
\end{align}$
Note: Many time students confuse with the formula
${{\tan }^{-1}}A+{{\tan }^{-1}}B={{\tan }^{-1}}\left( \dfrac{A+B}{1-AB} \right)\ or\ {{\tan }^{-1}}A-{{\tan }^{-1}}B={{\tan }^{-1}}\left( \dfrac{A-B}{1+AB} \right)$.
Because of minus signs as a result they take wrong formula which leads to the formation of wrong answers. Therefore, it is recommended to know all the formulas to solve such problems quickly. It is also recommended to go through step by step inorder to avoid any silly mistakes.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

