
Find the value of x, if:
${{\tan }^{-1}}\dfrac{x-2}{x-1}+{{\tan }^{-1}}\dfrac{x+2}{x+1}=\dfrac{\pi }{4}.$
Answer
598.2k+ views
Hint: We will use the formula for ${{\tan }^{-1}}A+{{\tan }^{-1}}B$ , which is given by ${{\tan }^{-1}}A+{{\tan }^{-1}}B={{\tan }^{-1}}\left( \dfrac{A+B}{1-AB} \right)$. The terms in the LHS of the question can be expanded using this formula. We have to substitute \[A=\dfrac{x-2}{x-1}\ and\ B=\dfrac{x+2}{x+1}\] in the above formula to expand the terms given in the question. After that, we will equate the result to the RHS, i.e. \[\dfrac{\pi }{4}\]. Then we can take tan on both sides. After doing this, we will end up with a quadratic equation in x which can be solved to get the value of x.
Complete step-by-step solution -
Given that;
${{\tan }^{-1}}\dfrac{x-2}{x-1}+{{\tan }^{-1}}\dfrac{x+2}{x+1}=\dfrac{\pi }{4}.$…………………. (1)
And, we have to find the value of x so that it will satisfy this equation.
We know that;
${{\tan }^{-1}}A+{{\tan }^{-1}}B={{\tan }^{-1}}\left( \dfrac{A+B}{1-AB} \right)$
Applying this formula in our question, we get;
$\begin{align}
& {{\tan }^{-1}}\left( \dfrac{x-2}{x-1} \right)+{{\tan }^{-1}}\left( \dfrac{x+2}{x+1} \right)={{\tan }^{-1}}\dfrac{\left( \left( \dfrac{x-2}{x-1} \right)+\left( \dfrac{x+2}{x+1} \right) \right)}{\left( 1-\left( \dfrac{x-2}{x-1} \right).\left( \dfrac{x+2}{x+1} \right) \right)} \\
& {{\tan }^{-1}}\left( \dfrac{x-2}{x-1} \right)+{{\tan }^{-1}}\left( \dfrac{x+2}{x+1} \right)={{\tan }^{-1}}\dfrac{\dfrac{\left( x-2 \right)\left( x+1 \right)+\left( x+2 \right)\left( x-1 \right)}{\left( x-1 \right)\left( x+1 \right)}}{1-\dfrac{{{x}^{2}}-{{\left( 2 \right)}^{2}}}{{{\left( x \right)}^{2}}-1}} \\
\end{align}$
As we know;
\[\begin{align}
& {{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) \\
& ={{\tan }^{-1}}\left( \dfrac{x-2}{x-1} \right)+{{\tan }^{-1}}\left( \dfrac{x+2}{x+1} \right)={{\tan }^{-1}}\dfrac{\dfrac{\left( x-2 \right)\left( x+1 \right)+\left( x+2 \right)\left( x-1 \right)}{{{\left( x \right)}^{2}}-{{\left( 1 \right)}^{2}}}}{\dfrac{{{x}^{2}}-1-{{x}^{2}}+4}{{{\left( x \right)}^{2}}-{{\left( 1 \right)}^{2}}}} \\
\end{align}\]
Cancelling the similar terms, we get;
\[{{\tan }^{-1}}\left( \dfrac{x-2}{x-1} \right)+{{\tan }^{-1}}\left( \dfrac{x+2}{x+1} \right)={{\tan }^{-1}}\left\{ \dfrac{\left( x-2 \right)\left( x+1 \right)+\left( x+2 \right)\left( x-1 \right)}{3} \right\}\]
Putting the value of;
\[{{\tan }^{-1}}\left( \dfrac{x-2}{x-1} \right)+{{\tan }^{-1}}\left( \dfrac{x+2}{x+1} \right)={{\tan }^{-1}}\left\{ \dfrac{\left( x-2 \right)\left( x+1 \right)+\left( x+2 \right)\left( x-1 \right)}{3} \right\}\]
in the equation (1), we get;
\[={{\tan }^{-1}}\left\{ \dfrac{\left( x-2 \right)\left( x+1 \right)+\left( x+2 \right)\left( x-1 \right)}{3} \right\}=\dfrac{\pi }{4}\]
Transposing \[{{\tan }^{-1}}\]from LHS to RHS, we get;
\[=\dfrac{\left( x-2 \right)\left( x+1 \right)+\left( x+2 \right)\left( x-1 \right)}{3}=\tan \left( \dfrac{\pi }{4} \right)\]………….. (2)
We know the value of \[\tan \dfrac{\pi }{4}=1\].
Putting the value of \[\tan \left( \dfrac{\pi }{4} \right)=1\]in equation (2), we get;
\[\begin{align}
& =\dfrac{\left( x-2 \right)\left( x+1 \right)+\left( x+2 \right)\left( x-1 \right)}{3}=1 \\
& =\left( x-2 \right)\left( x+1 \right)+\left( x+2 \right)\left( x-1 \right)=3 \\
& ={{x}^{2}}+x-2x-2+{{x}^{2}}-x+2x-2=3 \\
& ={{x}^{2}}+{{x}^{2}}+x-x-2x+2x-4=3 \\
\end{align}\]
Cancelling the similar terms, we get;
$\begin{align}
& =2{{x}^{2}}-4=3 \\
& =2{{x}^{2}}=3+4 \\
& =2{{x}^{2}}=7 \\
& ={{x}^{2}}=\dfrac{7}{2} \\
& =x=\pm \sqrt{\dfrac{7}{2}} \\
\end{align}$
Note: Many time students confuse with the formula
${{\tan }^{-1}}A+{{\tan }^{-1}}B={{\tan }^{-1}}\left( \dfrac{A+B}{1-AB} \right)\ or\ {{\tan }^{-1}}A-{{\tan }^{-1}}B={{\tan }^{-1}}\left( \dfrac{A-B}{1+AB} \right)$.
Because of minus signs as a result they take wrong formula which leads to the formation of wrong answers. Therefore, it is recommended to know all the formulas to solve such problems quickly. It is also recommended to go through step by step inorder to avoid any silly mistakes.
Complete step-by-step solution -
Given that;
${{\tan }^{-1}}\dfrac{x-2}{x-1}+{{\tan }^{-1}}\dfrac{x+2}{x+1}=\dfrac{\pi }{4}.$…………………. (1)
And, we have to find the value of x so that it will satisfy this equation.
We know that;
${{\tan }^{-1}}A+{{\tan }^{-1}}B={{\tan }^{-1}}\left( \dfrac{A+B}{1-AB} \right)$
Applying this formula in our question, we get;
$\begin{align}
& {{\tan }^{-1}}\left( \dfrac{x-2}{x-1} \right)+{{\tan }^{-1}}\left( \dfrac{x+2}{x+1} \right)={{\tan }^{-1}}\dfrac{\left( \left( \dfrac{x-2}{x-1} \right)+\left( \dfrac{x+2}{x+1} \right) \right)}{\left( 1-\left( \dfrac{x-2}{x-1} \right).\left( \dfrac{x+2}{x+1} \right) \right)} \\
& {{\tan }^{-1}}\left( \dfrac{x-2}{x-1} \right)+{{\tan }^{-1}}\left( \dfrac{x+2}{x+1} \right)={{\tan }^{-1}}\dfrac{\dfrac{\left( x-2 \right)\left( x+1 \right)+\left( x+2 \right)\left( x-1 \right)}{\left( x-1 \right)\left( x+1 \right)}}{1-\dfrac{{{x}^{2}}-{{\left( 2 \right)}^{2}}}{{{\left( x \right)}^{2}}-1}} \\
\end{align}$
As we know;
\[\begin{align}
& {{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) \\
& ={{\tan }^{-1}}\left( \dfrac{x-2}{x-1} \right)+{{\tan }^{-1}}\left( \dfrac{x+2}{x+1} \right)={{\tan }^{-1}}\dfrac{\dfrac{\left( x-2 \right)\left( x+1 \right)+\left( x+2 \right)\left( x-1 \right)}{{{\left( x \right)}^{2}}-{{\left( 1 \right)}^{2}}}}{\dfrac{{{x}^{2}}-1-{{x}^{2}}+4}{{{\left( x \right)}^{2}}-{{\left( 1 \right)}^{2}}}} \\
\end{align}\]
Cancelling the similar terms, we get;
\[{{\tan }^{-1}}\left( \dfrac{x-2}{x-1} \right)+{{\tan }^{-1}}\left( \dfrac{x+2}{x+1} \right)={{\tan }^{-1}}\left\{ \dfrac{\left( x-2 \right)\left( x+1 \right)+\left( x+2 \right)\left( x-1 \right)}{3} \right\}\]
Putting the value of;
\[{{\tan }^{-1}}\left( \dfrac{x-2}{x-1} \right)+{{\tan }^{-1}}\left( \dfrac{x+2}{x+1} \right)={{\tan }^{-1}}\left\{ \dfrac{\left( x-2 \right)\left( x+1 \right)+\left( x+2 \right)\left( x-1 \right)}{3} \right\}\]
in the equation (1), we get;
\[={{\tan }^{-1}}\left\{ \dfrac{\left( x-2 \right)\left( x+1 \right)+\left( x+2 \right)\left( x-1 \right)}{3} \right\}=\dfrac{\pi }{4}\]
Transposing \[{{\tan }^{-1}}\]from LHS to RHS, we get;
\[=\dfrac{\left( x-2 \right)\left( x+1 \right)+\left( x+2 \right)\left( x-1 \right)}{3}=\tan \left( \dfrac{\pi }{4} \right)\]………….. (2)
We know the value of \[\tan \dfrac{\pi }{4}=1\].
Putting the value of \[\tan \left( \dfrac{\pi }{4} \right)=1\]in equation (2), we get;
\[\begin{align}
& =\dfrac{\left( x-2 \right)\left( x+1 \right)+\left( x+2 \right)\left( x-1 \right)}{3}=1 \\
& =\left( x-2 \right)\left( x+1 \right)+\left( x+2 \right)\left( x-1 \right)=3 \\
& ={{x}^{2}}+x-2x-2+{{x}^{2}}-x+2x-2=3 \\
& ={{x}^{2}}+{{x}^{2}}+x-x-2x+2x-4=3 \\
\end{align}\]
Cancelling the similar terms, we get;
$\begin{align}
& =2{{x}^{2}}-4=3 \\
& =2{{x}^{2}}=3+4 \\
& =2{{x}^{2}}=7 \\
& ={{x}^{2}}=\dfrac{7}{2} \\
& =x=\pm \sqrt{\dfrac{7}{2}} \\
\end{align}$
Note: Many time students confuse with the formula
${{\tan }^{-1}}A+{{\tan }^{-1}}B={{\tan }^{-1}}\left( \dfrac{A+B}{1-AB} \right)\ or\ {{\tan }^{-1}}A-{{\tan }^{-1}}B={{\tan }^{-1}}\left( \dfrac{A-B}{1+AB} \right)$.
Because of minus signs as a result they take wrong formula which leads to the formation of wrong answers. Therefore, it is recommended to know all the formulas to solve such problems quickly. It is also recommended to go through step by step inorder to avoid any silly mistakes.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

