Answer
Verified
465.6k+ views
Hint:Here first we will simplify the given equation and then apply the following formula:
\[\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B\]
Then solve for the value of x.
Complete step-by-step answer:
The given equation is:-
\[{\cos ^{ - 1}}x + {\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) - \dfrac{\pi }{6} = 0\]
Simplifying the equation we get:-
\[
{\cos ^{ - 1}}x + {\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) = \dfrac{\pi }{6} \\
\Rightarrow {\cos ^{ - 1}}x = \dfrac{\pi }{6} - {\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) \\
\]
Now taking cos of both the sides we get:-
\[\cos \left( {{{\cos }^{ - 1}}x} \right) = \cos \left( {\dfrac{\pi }{6} - {{\sin }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right)\]
Now we know that:
\[\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B\]
\[\cos \left( {{{\cos }^{ - 1}}x} \right) = x\]
Hence applying the formulas we get:-
\[x = \cos \left( {\dfrac{\pi }{6}} \right)\cos \left( {{{\sin }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right) + \sin \left( {\dfrac{\pi }{6}} \right)\sin \left( {{{\sin }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right)\]
Now we know that:-
\[
\cos \left( {\dfrac{\pi }{6}} \right) = \dfrac{{\sqrt 3 }}{2} \\
\sin \left( {\dfrac{\pi }{6}} \right) = \dfrac{1}{2} \\
\sin \left( {{{\sin }^{ - 1}}x} \right) = x \\
\]
Putting these values we get:-
\[x = \dfrac{{\sqrt 3 }}{2}\cos \left( {{{\sin }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right) + \dfrac{1}{2} \times \dfrac{x}{2}\]……………………………(1)
Now since,
\[{\sin ^{ - 1}}\theta = {\cos ^{ - 1}}\left( {\sqrt {1 - {\theta ^2}} } \right)\]
Hence applying this formula we get:-
\[{\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) = {\cos ^{ - 1}}\left( {\sqrt {1 - {{\left( {\dfrac{x}{2}} \right)}^2}} } \right)\]
Solving it further we get:-
\[
{\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) = {\cos ^{ - 1}}\left( {\sqrt {\dfrac{{4 - {x^2}}}{4}} } \right) \\
\Rightarrow {\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) = {\cos ^{ - 1}}\left( {\dfrac{{\sqrt {4 - {x^2}} }}{2}} \right) \\
\]
Hence putting this value in equation1 we get:-
\[x = \dfrac{{\sqrt 3 }}{2}\cos \left( {{{\cos }^{ - 1}}\left( {\dfrac{{\sqrt {4 - {x^2}} }}{2}} \right)} \right) + \dfrac{1}{2} \times \dfrac{x}{2}\]
Since we know that:
\[\cos \left( {{{\cos }^{ - 1}}x} \right) = x\]
Hence applying this formula we get:-
\[x = \dfrac{{\sqrt 3 }}{2} \times \dfrac{{\sqrt {4 - {x^2}} }}{2} + \dfrac{x}{4}\]
Solving it further we get:-
\[
\Rightarrow x = \dfrac{{\sqrt {3\left( {4 - {x^2}} \right)} }}{4} + \dfrac{x}{4} \\
\Rightarrow x - \dfrac{x}{4} = \dfrac{{\sqrt {3\left( {4 - {x^2}} \right)} }}{4} \\
\Rightarrow \dfrac{{4x - x}}{4} = \dfrac{{\sqrt {3\left( {4 - {x^2}} \right)} }}{4} \\
\Rightarrow \dfrac{{3x}}{4} = \dfrac{{\sqrt {3\left( {4 - {x^2}} \right)} }}{4} \\
\]
Simplifying it further we get:-
\[3x = \sqrt {3\left( {4 - {x^2}} \right)} \]
Now squaring both the sides we get:-
\[
{\left( {3x} \right)^2} = {\left( {\sqrt {3\left( {4 - {x^2}} \right)} } \right)^2} \\
\Rightarrow 9{x^2} = 3\left( {4 - {x^2}} \right) \\
\]
Now simplifying it further we get:-
\[
9{x^2} = 12 - 3{x^2} \\
9{x^2} + 3{x^2} = 12 \\
12{x^2} = 12 \\
\]
Dividing both sides by 12 we get:-
\[{x^2} = 1\]
Now taking square root of both the sides we get:-
\[
\sqrt {{x^2}} = \sqrt 1 \\
x = \pm 1 \\
\]
But the value of x cannot be -1
Hence we get:-
\[x = 1\]
Note:Students should note that in such questions we have converted the question into one form either of cosine or sine and then apply the known identities to solve it.
Also while taking the square root of any quantity both the positive and negative values should be considered.
\[\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B\]
Then solve for the value of x.
Complete step-by-step answer:
The given equation is:-
\[{\cos ^{ - 1}}x + {\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) - \dfrac{\pi }{6} = 0\]
Simplifying the equation we get:-
\[
{\cos ^{ - 1}}x + {\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) = \dfrac{\pi }{6} \\
\Rightarrow {\cos ^{ - 1}}x = \dfrac{\pi }{6} - {\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) \\
\]
Now taking cos of both the sides we get:-
\[\cos \left( {{{\cos }^{ - 1}}x} \right) = \cos \left( {\dfrac{\pi }{6} - {{\sin }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right)\]
Now we know that:
\[\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B\]
\[\cos \left( {{{\cos }^{ - 1}}x} \right) = x\]
Hence applying the formulas we get:-
\[x = \cos \left( {\dfrac{\pi }{6}} \right)\cos \left( {{{\sin }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right) + \sin \left( {\dfrac{\pi }{6}} \right)\sin \left( {{{\sin }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right)\]
Now we know that:-
\[
\cos \left( {\dfrac{\pi }{6}} \right) = \dfrac{{\sqrt 3 }}{2} \\
\sin \left( {\dfrac{\pi }{6}} \right) = \dfrac{1}{2} \\
\sin \left( {{{\sin }^{ - 1}}x} \right) = x \\
\]
Putting these values we get:-
\[x = \dfrac{{\sqrt 3 }}{2}\cos \left( {{{\sin }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right) + \dfrac{1}{2} \times \dfrac{x}{2}\]……………………………(1)
Now since,
\[{\sin ^{ - 1}}\theta = {\cos ^{ - 1}}\left( {\sqrt {1 - {\theta ^2}} } \right)\]
Hence applying this formula we get:-
\[{\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) = {\cos ^{ - 1}}\left( {\sqrt {1 - {{\left( {\dfrac{x}{2}} \right)}^2}} } \right)\]
Solving it further we get:-
\[
{\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) = {\cos ^{ - 1}}\left( {\sqrt {\dfrac{{4 - {x^2}}}{4}} } \right) \\
\Rightarrow {\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) = {\cos ^{ - 1}}\left( {\dfrac{{\sqrt {4 - {x^2}} }}{2}} \right) \\
\]
Hence putting this value in equation1 we get:-
\[x = \dfrac{{\sqrt 3 }}{2}\cos \left( {{{\cos }^{ - 1}}\left( {\dfrac{{\sqrt {4 - {x^2}} }}{2}} \right)} \right) + \dfrac{1}{2} \times \dfrac{x}{2}\]
Since we know that:
\[\cos \left( {{{\cos }^{ - 1}}x} \right) = x\]
Hence applying this formula we get:-
\[x = \dfrac{{\sqrt 3 }}{2} \times \dfrac{{\sqrt {4 - {x^2}} }}{2} + \dfrac{x}{4}\]
Solving it further we get:-
\[
\Rightarrow x = \dfrac{{\sqrt {3\left( {4 - {x^2}} \right)} }}{4} + \dfrac{x}{4} \\
\Rightarrow x - \dfrac{x}{4} = \dfrac{{\sqrt {3\left( {4 - {x^2}} \right)} }}{4} \\
\Rightarrow \dfrac{{4x - x}}{4} = \dfrac{{\sqrt {3\left( {4 - {x^2}} \right)} }}{4} \\
\Rightarrow \dfrac{{3x}}{4} = \dfrac{{\sqrt {3\left( {4 - {x^2}} \right)} }}{4} \\
\]
Simplifying it further we get:-
\[3x = \sqrt {3\left( {4 - {x^2}} \right)} \]
Now squaring both the sides we get:-
\[
{\left( {3x} \right)^2} = {\left( {\sqrt {3\left( {4 - {x^2}} \right)} } \right)^2} \\
\Rightarrow 9{x^2} = 3\left( {4 - {x^2}} \right) \\
\]
Now simplifying it further we get:-
\[
9{x^2} = 12 - 3{x^2} \\
9{x^2} + 3{x^2} = 12 \\
12{x^2} = 12 \\
\]
Dividing both sides by 12 we get:-
\[{x^2} = 1\]
Now taking square root of both the sides we get:-
\[
\sqrt {{x^2}} = \sqrt 1 \\
x = \pm 1 \\
\]
But the value of x cannot be -1
Hence we get:-
\[x = 1\]
Note:Students should note that in such questions we have converted the question into one form either of cosine or sine and then apply the known identities to solve it.
Also while taking the square root of any quantity both the positive and negative values should be considered.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Collect pictures stories poems and information about class 10 social studies CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Why is there a time difference of about 5 hours between class 10 social science CBSE