
Find the value of x if,
\[{\cos ^{ - 1}}x + {\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) - \dfrac{\pi }{6} = 0\].
Answer
567.6k+ views
Hint:Here first we will simplify the given equation and then apply the following formula:
\[\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B\]
Then solve for the value of x.
Complete step-by-step answer:
The given equation is:-
\[{\cos ^{ - 1}}x + {\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) - \dfrac{\pi }{6} = 0\]
Simplifying the equation we get:-
\[
{\cos ^{ - 1}}x + {\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) = \dfrac{\pi }{6} \\
\Rightarrow {\cos ^{ - 1}}x = \dfrac{\pi }{6} - {\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) \\
\]
Now taking cos of both the sides we get:-
\[\cos \left( {{{\cos }^{ - 1}}x} \right) = \cos \left( {\dfrac{\pi }{6} - {{\sin }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right)\]
Now we know that:
\[\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B\]
\[\cos \left( {{{\cos }^{ - 1}}x} \right) = x\]
Hence applying the formulas we get:-
\[x = \cos \left( {\dfrac{\pi }{6}} \right)\cos \left( {{{\sin }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right) + \sin \left( {\dfrac{\pi }{6}} \right)\sin \left( {{{\sin }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right)\]
Now we know that:-
\[
\cos \left( {\dfrac{\pi }{6}} \right) = \dfrac{{\sqrt 3 }}{2} \\
\sin \left( {\dfrac{\pi }{6}} \right) = \dfrac{1}{2} \\
\sin \left( {{{\sin }^{ - 1}}x} \right) = x \\
\]
Putting these values we get:-
\[x = \dfrac{{\sqrt 3 }}{2}\cos \left( {{{\sin }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right) + \dfrac{1}{2} \times \dfrac{x}{2}\]……………………………(1)
Now since,
\[{\sin ^{ - 1}}\theta = {\cos ^{ - 1}}\left( {\sqrt {1 - {\theta ^2}} } \right)\]
Hence applying this formula we get:-
\[{\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) = {\cos ^{ - 1}}\left( {\sqrt {1 - {{\left( {\dfrac{x}{2}} \right)}^2}} } \right)\]
Solving it further we get:-
\[
{\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) = {\cos ^{ - 1}}\left( {\sqrt {\dfrac{{4 - {x^2}}}{4}} } \right) \\
\Rightarrow {\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) = {\cos ^{ - 1}}\left( {\dfrac{{\sqrt {4 - {x^2}} }}{2}} \right) \\
\]
Hence putting this value in equation1 we get:-
\[x = \dfrac{{\sqrt 3 }}{2}\cos \left( {{{\cos }^{ - 1}}\left( {\dfrac{{\sqrt {4 - {x^2}} }}{2}} \right)} \right) + \dfrac{1}{2} \times \dfrac{x}{2}\]
Since we know that:
\[\cos \left( {{{\cos }^{ - 1}}x} \right) = x\]
Hence applying this formula we get:-
\[x = \dfrac{{\sqrt 3 }}{2} \times \dfrac{{\sqrt {4 - {x^2}} }}{2} + \dfrac{x}{4}\]
Solving it further we get:-
\[
\Rightarrow x = \dfrac{{\sqrt {3\left( {4 - {x^2}} \right)} }}{4} + \dfrac{x}{4} \\
\Rightarrow x - \dfrac{x}{4} = \dfrac{{\sqrt {3\left( {4 - {x^2}} \right)} }}{4} \\
\Rightarrow \dfrac{{4x - x}}{4} = \dfrac{{\sqrt {3\left( {4 - {x^2}} \right)} }}{4} \\
\Rightarrow \dfrac{{3x}}{4} = \dfrac{{\sqrt {3\left( {4 - {x^2}} \right)} }}{4} \\
\]
Simplifying it further we get:-
\[3x = \sqrt {3\left( {4 - {x^2}} \right)} \]
Now squaring both the sides we get:-
\[
{\left( {3x} \right)^2} = {\left( {\sqrt {3\left( {4 - {x^2}} \right)} } \right)^2} \\
\Rightarrow 9{x^2} = 3\left( {4 - {x^2}} \right) \\
\]
Now simplifying it further we get:-
\[
9{x^2} = 12 - 3{x^2} \\
9{x^2} + 3{x^2} = 12 \\
12{x^2} = 12 \\
\]
Dividing both sides by 12 we get:-
\[{x^2} = 1\]
Now taking square root of both the sides we get:-
\[
\sqrt {{x^2}} = \sqrt 1 \\
x = \pm 1 \\
\]
But the value of x cannot be -1
Hence we get:-
\[x = 1\]
Note:Students should note that in such questions we have converted the question into one form either of cosine or sine and then apply the known identities to solve it.
Also while taking the square root of any quantity both the positive and negative values should be considered.
\[\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B\]
Then solve for the value of x.
Complete step-by-step answer:
The given equation is:-
\[{\cos ^{ - 1}}x + {\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) - \dfrac{\pi }{6} = 0\]
Simplifying the equation we get:-
\[
{\cos ^{ - 1}}x + {\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) = \dfrac{\pi }{6} \\
\Rightarrow {\cos ^{ - 1}}x = \dfrac{\pi }{6} - {\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) \\
\]
Now taking cos of both the sides we get:-
\[\cos \left( {{{\cos }^{ - 1}}x} \right) = \cos \left( {\dfrac{\pi }{6} - {{\sin }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right)\]
Now we know that:
\[\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B\]
\[\cos \left( {{{\cos }^{ - 1}}x} \right) = x\]
Hence applying the formulas we get:-
\[x = \cos \left( {\dfrac{\pi }{6}} \right)\cos \left( {{{\sin }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right) + \sin \left( {\dfrac{\pi }{6}} \right)\sin \left( {{{\sin }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right)\]
Now we know that:-
\[
\cos \left( {\dfrac{\pi }{6}} \right) = \dfrac{{\sqrt 3 }}{2} \\
\sin \left( {\dfrac{\pi }{6}} \right) = \dfrac{1}{2} \\
\sin \left( {{{\sin }^{ - 1}}x} \right) = x \\
\]
Putting these values we get:-
\[x = \dfrac{{\sqrt 3 }}{2}\cos \left( {{{\sin }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right) + \dfrac{1}{2} \times \dfrac{x}{2}\]……………………………(1)
Now since,
\[{\sin ^{ - 1}}\theta = {\cos ^{ - 1}}\left( {\sqrt {1 - {\theta ^2}} } \right)\]
Hence applying this formula we get:-
\[{\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) = {\cos ^{ - 1}}\left( {\sqrt {1 - {{\left( {\dfrac{x}{2}} \right)}^2}} } \right)\]
Solving it further we get:-
\[
{\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) = {\cos ^{ - 1}}\left( {\sqrt {\dfrac{{4 - {x^2}}}{4}} } \right) \\
\Rightarrow {\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) = {\cos ^{ - 1}}\left( {\dfrac{{\sqrt {4 - {x^2}} }}{2}} \right) \\
\]
Hence putting this value in equation1 we get:-
\[x = \dfrac{{\sqrt 3 }}{2}\cos \left( {{{\cos }^{ - 1}}\left( {\dfrac{{\sqrt {4 - {x^2}} }}{2}} \right)} \right) + \dfrac{1}{2} \times \dfrac{x}{2}\]
Since we know that:
\[\cos \left( {{{\cos }^{ - 1}}x} \right) = x\]
Hence applying this formula we get:-
\[x = \dfrac{{\sqrt 3 }}{2} \times \dfrac{{\sqrt {4 - {x^2}} }}{2} + \dfrac{x}{4}\]
Solving it further we get:-
\[
\Rightarrow x = \dfrac{{\sqrt {3\left( {4 - {x^2}} \right)} }}{4} + \dfrac{x}{4} \\
\Rightarrow x - \dfrac{x}{4} = \dfrac{{\sqrt {3\left( {4 - {x^2}} \right)} }}{4} \\
\Rightarrow \dfrac{{4x - x}}{4} = \dfrac{{\sqrt {3\left( {4 - {x^2}} \right)} }}{4} \\
\Rightarrow \dfrac{{3x}}{4} = \dfrac{{\sqrt {3\left( {4 - {x^2}} \right)} }}{4} \\
\]
Simplifying it further we get:-
\[3x = \sqrt {3\left( {4 - {x^2}} \right)} \]
Now squaring both the sides we get:-
\[
{\left( {3x} \right)^2} = {\left( {\sqrt {3\left( {4 - {x^2}} \right)} } \right)^2} \\
\Rightarrow 9{x^2} = 3\left( {4 - {x^2}} \right) \\
\]
Now simplifying it further we get:-
\[
9{x^2} = 12 - 3{x^2} \\
9{x^2} + 3{x^2} = 12 \\
12{x^2} = 12 \\
\]
Dividing both sides by 12 we get:-
\[{x^2} = 1\]
Now taking square root of both the sides we get:-
\[
\sqrt {{x^2}} = \sqrt 1 \\
x = \pm 1 \\
\]
But the value of x cannot be -1
Hence we get:-
\[x = 1\]
Note:Students should note that in such questions we have converted the question into one form either of cosine or sine and then apply the known identities to solve it.
Also while taking the square root of any quantity both the positive and negative values should be considered.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

Draw ray diagrams each showing i myopic eye and ii class 12 physics CBSE

