Answer
Verified
391.8k+ views
Hint: We are given an equation and we have to find the unknown here. We see that the numbers inside the brackets are quite large, so we won’t open the squares and then do the subtraction. We instead will use an algebraic identity which will make our calculations easier. To figure out what identity to use, observe carefully the right side of the equation which involves squaring and subtraction, so we will use the identity $a^2-b^2=\left(a+b\right)\left(a-b\right)$.
Complete step by step answer:
We have $4x=\left(52\right)^2-\left(48\right)^2$. Look at the right side of this equation. We know the following algebraic identity:
For any two real numbers $a$ and $b$, the following holds true in any case:
$a^2-b^2=\left(a+b\right)\left(a-b\right)$
We assign the numbers $a$ and $b$ as follows:
$a=52$ and $b=48$
Then:
$52^2-48^2=\left(52+48\right)\left(52-48\right)$
So, we get:
$52^2-48^2=100\times 4=400$
Now, this result obtained is equal to $4x$ which is the left hand side of the equation given in the question, i.e.
$4x=400$
Divide both sides of the equation by 4 we get:
$x=100$
So, we have found the value of $x$ to be 100.
Note: See that we have reduced the calculations by using a trick identity. Do not open the squares because that would lead to a very large calculation. Also, there is a chance that you might end up making huge calculation mistakes which might lead to an incorrect answer. In such questions, always try to use some algebraic identity wherever possible because that reduces the calculation labor and also gives the most accurate result.
Complete step by step answer:
We have $4x=\left(52\right)^2-\left(48\right)^2$. Look at the right side of this equation. We know the following algebraic identity:
For any two real numbers $a$ and $b$, the following holds true in any case:
$a^2-b^2=\left(a+b\right)\left(a-b\right)$
We assign the numbers $a$ and $b$ as follows:
$a=52$ and $b=48$
Then:
$52^2-48^2=\left(52+48\right)\left(52-48\right)$
So, we get:
$52^2-48^2=100\times 4=400$
Now, this result obtained is equal to $4x$ which is the left hand side of the equation given in the question, i.e.
$4x=400$
Divide both sides of the equation by 4 we get:
$x=100$
So, we have found the value of $x$ to be 100.
Note: See that we have reduced the calculations by using a trick identity. Do not open the squares because that would lead to a very large calculation. Also, there is a chance that you might end up making huge calculation mistakes which might lead to an incorrect answer. In such questions, always try to use some algebraic identity wherever possible because that reduces the calculation labor and also gives the most accurate result.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Collect pictures stories poems and information about class 10 social studies CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Why is there a time difference of about 5 hours between class 10 social science CBSE