
Find the value of $x + y + z$ if ${\cot ^{ - 1}}x + {\cot ^{ - 1}}y + {\cot ^{ - 1}}z = \dfrac{\pi }{2}$
A) $xyz$
B) $xy + yz + zx$
C) $2xyz$
D) None of these
Answer
613.8k+ views
Hint- First, we will find the value of ${\cot ^{ - 1}}x$ in order to make our solution simple. Then we will replace that value in the given equation i.e. ${\cot ^{ - 1}}x + {\cot ^{ - 1}}y + {\cot ^{ - 1}}z = \dfrac{\pi }{2}$. We will also use the property of ($\tan( \pi - \theta) = -\tan(\theta) $).
Complete step-by-step answer:
The equation given to us by the question is: ${\cot ^{ - 1}}x + {\cot ^{ - 1}}y + {\cot ^{ - 1}}z = \dfrac{\pi }{2}$.
Now, as we all know that ${\cot ^{ - 1}}x + {\tan ^{ - 1}}x = \dfrac{\pi }{2}$, we will find out the value of ${\cot ^{ - 1}}x$ i.e. ${\cot ^{ - 1}}x = \dfrac{\pi }{2} - {\tan ^{ - 1}}x$. Now, we will replace this value of ${\cot ^{ - 1}}x$, in the equation given to us, we get-
$ \to \dfrac{\pi }{2} - {\tan ^{ - 1}}x + \dfrac{\pi }{2} - {\tan ^{ - 1}}y + \dfrac{\pi }{2} - {\tan ^{ - 1}}z = \dfrac{\pi }{2}$
Cancelling $\dfrac{\pi }{2}$ from the above equation we will have simplified equation as-
$ \to {\tan ^{ - 1}}x + {\tan ^{ - 1}}y + {\tan ^{ - 1}}z = \pi $
Taking ${\tan ^{ - 1}}z$ to the right side of the equation we get-
$ \to {\tan ^{ - 1}}x + {\tan ^{ - 1}}y = \pi - {\tan ^{ - 1}}z$
Multiplying the above equation by $\tan $, we will get-
$ \to \tan \left( {{{\tan }^{ - 1}}x + {{\tan }^{ - 1}}y} \right) = \tan \left( {\pi - {{\tan }^{ - 1}}z} \right)$
By applying the property of $\tan \left( {\pi - \theta } \right) = - \tan \theta $ and the property of ${\tan ^{ - 1}}x + {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right)$ in the above equation we will get-
$
\to \tan \left[ {{{\tan }^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right)} \right] = - \tan \left( {{{\tan }^{ - 1}}z} \right) \\
\\
\Rightarrow \tan \left[ {{{\tan }^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right)} \right] = - z \\
\\
\Rightarrow \dfrac{{x + y}}{{1 - xy}} = - z \\
\\
\Rightarrow x + y = - z + xyz \\
\\
\Rightarrow x + y + z = xyz \\
$
Thus, we get the value of $x + y + z$ to be $xyz$
Hence, above option A is correct.
Note: Don’t forget to use the properties. Replacing some values by using properties will make the answer simple. The properties like ${\tan ^{ - 1}}x + {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right)$ and $\tan \pi - \theta = - \tan \theta $ should always be in your mind.
Complete step-by-step answer:
The equation given to us by the question is: ${\cot ^{ - 1}}x + {\cot ^{ - 1}}y + {\cot ^{ - 1}}z = \dfrac{\pi }{2}$.
Now, as we all know that ${\cot ^{ - 1}}x + {\tan ^{ - 1}}x = \dfrac{\pi }{2}$, we will find out the value of ${\cot ^{ - 1}}x$ i.e. ${\cot ^{ - 1}}x = \dfrac{\pi }{2} - {\tan ^{ - 1}}x$. Now, we will replace this value of ${\cot ^{ - 1}}x$, in the equation given to us, we get-
$ \to \dfrac{\pi }{2} - {\tan ^{ - 1}}x + \dfrac{\pi }{2} - {\tan ^{ - 1}}y + \dfrac{\pi }{2} - {\tan ^{ - 1}}z = \dfrac{\pi }{2}$
Cancelling $\dfrac{\pi }{2}$ from the above equation we will have simplified equation as-
$ \to {\tan ^{ - 1}}x + {\tan ^{ - 1}}y + {\tan ^{ - 1}}z = \pi $
Taking ${\tan ^{ - 1}}z$ to the right side of the equation we get-
$ \to {\tan ^{ - 1}}x + {\tan ^{ - 1}}y = \pi - {\tan ^{ - 1}}z$
Multiplying the above equation by $\tan $, we will get-
$ \to \tan \left( {{{\tan }^{ - 1}}x + {{\tan }^{ - 1}}y} \right) = \tan \left( {\pi - {{\tan }^{ - 1}}z} \right)$
By applying the property of $\tan \left( {\pi - \theta } \right) = - \tan \theta $ and the property of ${\tan ^{ - 1}}x + {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right)$ in the above equation we will get-
$
\to \tan \left[ {{{\tan }^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right)} \right] = - \tan \left( {{{\tan }^{ - 1}}z} \right) \\
\\
\Rightarrow \tan \left[ {{{\tan }^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right)} \right] = - z \\
\\
\Rightarrow \dfrac{{x + y}}{{1 - xy}} = - z \\
\\
\Rightarrow x + y = - z + xyz \\
\\
\Rightarrow x + y + z = xyz \\
$
Thus, we get the value of $x + y + z$ to be $xyz$
Hence, above option A is correct.
Note: Don’t forget to use the properties. Replacing some values by using properties will make the answer simple. The properties like ${\tan ^{ - 1}}x + {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right)$ and $\tan \pi - \theta = - \tan \theta $ should always be in your mind.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

