
Find the value of the sum$\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})}$, where $i=\sqrt{-1}$.
(a) $i$
(b) $i-1$
(c) $-i$
(d) 0
Answer
612.6k+ views
Hint: In this question, you can use the concept of power of Iota. Iota is square root of minus 1 means$\sqrt{-1}$. For example, what is the value of Iota's power 3? Iota $i=\sqrt{-1}$ so ${{i}^{2}}$ is $\sqrt{-1}\times \sqrt{-1}=-1$ and hence${{i}^{3}}={{i}^{2}}\times i=-i$.
A series can be represented in a compact form, called summation or sigma notation. The Greek capital letter \[\sum \] is used to represent the sum.
Complete step-by-step answer:
Let us consider the given summation,
$\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})}=\sum\limits_{n=1}^{13}{(1+i){{i}^{n}}}$
$\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})}=(1+i)\sum\limits_{n=1}^{13}{{{i}^{n}}}=(1+i)\left( i+{{i}^{2}}+{{i}^{3}}+{{i}^{4}}+{{i}^{5}}+{{i}^{6}}+{{i}^{7}}+{{i}^{8}}+{{i}^{9}}+{{i}^{10}}+{{i}^{11}}+{{i}^{12}}+{{i}^{13}} \right)$
$\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})}=(1+i)\left( i+{{i}^{2}}+{{i}^{3}}+{{i}^{4}}+{{i}^{5}}+{{i}^{6}}+{{i}^{7}}+{{i}^{8}}+{{i}^{9}}+{{i}^{10}}+{{i}^{11}}+{{i}^{12}}+{{i}^{13}} \right)$
By using the power of iota concept, we get
$\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})}=(1+i)\left( i-1-i+1+i-1-i+1+i-1-i+1+i \right)$
Cancelling the common terms, we get
$\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})}=(1+i)i$
Open the brackets and multiply by I on the right side, we get
$\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})}=i+{{i}^{2}}$
We know that, ${{i}^{2}}=-1$
$\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})}=i-1$
Hence, the value of the sum $\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})}$ is $i-1$.
Therefore, the correct option for the given question is option (b)
Note: Alternatively, the question is solved as follows
Let us consider the summation,
$\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})}=\sum\limits_{n=1}^{13}{(1+i){{i}^{n}}}$
$\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})}=(1+i)\sum\limits_{n=1}^{13}{{{i}^{n}}}=(1+i)\left( i+{{i}^{2}}+{{i}^{3}}+{{i}^{4}}+{{i}^{5}}+{{i}^{6}}+{{i}^{7}}+{{i}^{8}}+{{i}^{9}}+{{i}^{10}}+{{i}^{11}}+{{i}^{12}}+{{i}^{13}} \right)$
$\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})}=(1+i)\left( i+{{i}^{2}}+{{i}^{3}}+{{i}^{4}}+{{i}^{5}}+{{i}^{6}}+{{i}^{7}}+{{i}^{8}}+{{i}^{9}}+{{i}^{10}}+{{i}^{11}}+{{i}^{12}}+{{i}^{13}} \right)$
The second term is a geometric progression on right side and we have to find the summation by using the formula
${{S}_{n}}=a\left( \dfrac{{{r}^{n}}-1}{r-1} \right),r>1$
$\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})}=(1+i)i\left( \dfrac{{{i}^{13}}-1}{i-1} \right)$
We have ${{i}^{13}}=i$
$\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})}=(1+i)i\left( \dfrac{i-1}{i-1} \right)$
Cancelling the same terms , we get
$\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})}=(1+i)i$
Open the brackets and multiply by I on the right side, we get
$\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})}=i+{{i}^{2}}$
We know that, ${{i}^{2}}=-1$
$\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})}=i-1$
Hence, the value of the sum $\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})}$ is $i-1$.
Therefore, the correct option for the given question is option (b)
A series can be represented in a compact form, called summation or sigma notation. The Greek capital letter \[\sum \] is used to represent the sum.
Complete step-by-step answer:
Let us consider the given summation,
$\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})}=\sum\limits_{n=1}^{13}{(1+i){{i}^{n}}}$
$\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})}=(1+i)\sum\limits_{n=1}^{13}{{{i}^{n}}}=(1+i)\left( i+{{i}^{2}}+{{i}^{3}}+{{i}^{4}}+{{i}^{5}}+{{i}^{6}}+{{i}^{7}}+{{i}^{8}}+{{i}^{9}}+{{i}^{10}}+{{i}^{11}}+{{i}^{12}}+{{i}^{13}} \right)$
$\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})}=(1+i)\left( i+{{i}^{2}}+{{i}^{3}}+{{i}^{4}}+{{i}^{5}}+{{i}^{6}}+{{i}^{7}}+{{i}^{8}}+{{i}^{9}}+{{i}^{10}}+{{i}^{11}}+{{i}^{12}}+{{i}^{13}} \right)$
By using the power of iota concept, we get
$\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})}=(1+i)\left( i-1-i+1+i-1-i+1+i-1-i+1+i \right)$
Cancelling the common terms, we get
$\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})}=(1+i)i$
Open the brackets and multiply by I on the right side, we get
$\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})}=i+{{i}^{2}}$
We know that, ${{i}^{2}}=-1$
$\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})}=i-1$
Hence, the value of the sum $\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})}$ is $i-1$.
Therefore, the correct option for the given question is option (b)
Note: Alternatively, the question is solved as follows
Let us consider the summation,
$\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})}=\sum\limits_{n=1}^{13}{(1+i){{i}^{n}}}$
$\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})}=(1+i)\sum\limits_{n=1}^{13}{{{i}^{n}}}=(1+i)\left( i+{{i}^{2}}+{{i}^{3}}+{{i}^{4}}+{{i}^{5}}+{{i}^{6}}+{{i}^{7}}+{{i}^{8}}+{{i}^{9}}+{{i}^{10}}+{{i}^{11}}+{{i}^{12}}+{{i}^{13}} \right)$
$\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})}=(1+i)\left( i+{{i}^{2}}+{{i}^{3}}+{{i}^{4}}+{{i}^{5}}+{{i}^{6}}+{{i}^{7}}+{{i}^{8}}+{{i}^{9}}+{{i}^{10}}+{{i}^{11}}+{{i}^{12}}+{{i}^{13}} \right)$
The second term is a geometric progression on right side and we have to find the summation by using the formula
${{S}_{n}}=a\left( \dfrac{{{r}^{n}}-1}{r-1} \right),r>1$
$\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})}=(1+i)i\left( \dfrac{{{i}^{13}}-1}{i-1} \right)$
We have ${{i}^{13}}=i$
$\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})}=(1+i)i\left( \dfrac{i-1}{i-1} \right)$
Cancelling the same terms , we get
$\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})}=(1+i)i$
Open the brackets and multiply by I on the right side, we get
$\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})}=i+{{i}^{2}}$
We know that, ${{i}^{2}}=-1$
$\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})}=i-1$
Hence, the value of the sum $\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})}$ is $i-1$.
Therefore, the correct option for the given question is option (b)
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

