
Find the value of the \[{{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}\], If (\[x+iy=\sqrt{\dfrac{a+ib}{c+id}}\].
(a). \[\dfrac{{{a}^{2}}+{{b}^{2}}}{{{c}^{2}}+{{d}^{2}}}\]
(b). \[\dfrac{a+b}{c+d}\]
(c).\[\dfrac{{{c}^{2}}+{{d}^{2}}}{{{a}^{2}}+{{b}^{2}}}\]
(d). \[{{\left( \dfrac{{{a}^{2}}+{{b}^{2}}}{{{c}^{2}}+{{d}^{2}}} \right)}^{2}}\]
Answer
613.2k+ views
Hint: In the given expression, replace i, by (-i). Now multiply both the equations. Use basic identities like \[\left( {{a}^{2}}-{{b}^{2}} \right)\] and solve it. Finally square the LHS and RHS of the equation formed.
Complete step-by-step solution -
Given to us an expression of complex numbers, let us mark it as (1).
\[x+iy=\sqrt{\dfrac{a+ib}{c+id}}-(1)\]
Now let us replace i by (-i) in the above equation, we get
\[x-iy=\sqrt{\dfrac{a-ib}{c-id}}-(2)\]
Now let us multiply equation (1) and (2).
\[\left( x+iy \right)\left( x-iy \right)=\sqrt{\dfrac{a+ib}{c+id}}\times \sqrt{\dfrac{a-ib}{c-id}}\]
We know the formula, \[\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}\]. Apply the same in the above expression.
\[{{x}^{2}}-{{\left( iy \right)}^{2}}=\sqrt{\dfrac{\left( a+ib \right)}{\left( c+id \right)}\times \dfrac{\left( a-ib \right)}{\left( c-id \right)}}\left\{ \because {{i}^{2}}=-1 \right\}\]
\[\begin{align}
& {{x}^{2}}-{{i}^{2}}{{y}^{2}}=\sqrt{\dfrac{{{a}^{2}}-{{\left( ib \right)}^{2}}}{{{c}^{2}}-{{\left( id \right)}^{2}}}} \\
& {{x}^{2}}-\left( -1 \right){{y}^{2}}=\sqrt{\dfrac{{{a}^{2}}-\left( -1 \right){{b}^{2}}}{{{c}^{2}}-\left( -1 \right){{d}^{2}}}} \\
\end{align}\]
Thus we get,
\[{{x}^{2}}+{{y}^{2}}=\sqrt{\dfrac{{{a}^{2}}+{{b}^{2}}}{{{c}^{2}}+{{d}^{2}}}}-(3)\]
Now let us square both sides of equation (3).
\[\begin{align}
& {{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}={{\left( \sqrt{\dfrac{{{a}^{2}}+{{b}^{2}}}{{{c}^{2}}+{{d}^{2}}}} \right)}^{2}} \\
& \Rightarrow {{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}=\dfrac{{{a}^{2}}+{{b}^{2}}}{{{c}^{2}}+{{d}^{2}}} \\
\end{align}\]
Hence we got the value of \[{{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}=\dfrac{{{a}^{2}}+{{b}^{2}}}{{{c}^{2}}+{{d}^{2}}}\].
\[\therefore \] Option (a) is the correct answer.
Note: You may also try to solve it by taking conjugate of \[\left( a+ib \right)\] then multiplying it on numerator and denominator. Then comparing the real and imaginary part of the complex method, you can also do it this way but it's lengthy and complicated. Thus we use the above method.
Complete step-by-step solution -
Given to us an expression of complex numbers, let us mark it as (1).
\[x+iy=\sqrt{\dfrac{a+ib}{c+id}}-(1)\]
Now let us replace i by (-i) in the above equation, we get
\[x-iy=\sqrt{\dfrac{a-ib}{c-id}}-(2)\]
Now let us multiply equation (1) and (2).
\[\left( x+iy \right)\left( x-iy \right)=\sqrt{\dfrac{a+ib}{c+id}}\times \sqrt{\dfrac{a-ib}{c-id}}\]
We know the formula, \[\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}\]. Apply the same in the above expression.
\[{{x}^{2}}-{{\left( iy \right)}^{2}}=\sqrt{\dfrac{\left( a+ib \right)}{\left( c+id \right)}\times \dfrac{\left( a-ib \right)}{\left( c-id \right)}}\left\{ \because {{i}^{2}}=-1 \right\}\]
\[\begin{align}
& {{x}^{2}}-{{i}^{2}}{{y}^{2}}=\sqrt{\dfrac{{{a}^{2}}-{{\left( ib \right)}^{2}}}{{{c}^{2}}-{{\left( id \right)}^{2}}}} \\
& {{x}^{2}}-\left( -1 \right){{y}^{2}}=\sqrt{\dfrac{{{a}^{2}}-\left( -1 \right){{b}^{2}}}{{{c}^{2}}-\left( -1 \right){{d}^{2}}}} \\
\end{align}\]
Thus we get,
\[{{x}^{2}}+{{y}^{2}}=\sqrt{\dfrac{{{a}^{2}}+{{b}^{2}}}{{{c}^{2}}+{{d}^{2}}}}-(3)\]
Now let us square both sides of equation (3).
\[\begin{align}
& {{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}={{\left( \sqrt{\dfrac{{{a}^{2}}+{{b}^{2}}}{{{c}^{2}}+{{d}^{2}}}} \right)}^{2}} \\
& \Rightarrow {{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}=\dfrac{{{a}^{2}}+{{b}^{2}}}{{{c}^{2}}+{{d}^{2}}} \\
\end{align}\]
Hence we got the value of \[{{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}=\dfrac{{{a}^{2}}+{{b}^{2}}}{{{c}^{2}}+{{d}^{2}}}\].
\[\therefore \] Option (a) is the correct answer.
Note: You may also try to solve it by taking conjugate of \[\left( a+ib \right)\] then multiplying it on numerator and denominator. Then comparing the real and imaginary part of the complex method, you can also do it this way but it's lengthy and complicated. Thus we use the above method.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Which cell organelles are present in white blood C class 11 biology CBSE

What is the molecular geometry of BrF4 A square planar class 11 chemistry CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

State the laws of reflection of light

Difference Between Prokaryotic Cells and Eukaryotic Cells

Show that total energy of a freely falling body remains class 11 physics CBSE

