
Find the value of the integral $ \dfrac{{(1 + 2\cos x)}}{{{{(2 + \cos x)}^2}}}dx $ from $ 0 $ to \[\dfrac{\pi }{2}\].
Answer
506.4k+ views
Hint: We have to integrate the given function $ \dfrac{{(1 + 2\cos x)}}{{{{(2 + \cos x)}^2}}}dx $ for the values of the integrals $ 0 $ to $ \dfrac{\pi }{2} $ with respect to $ x $ .We solve this question using the substitution method of integration . We simply put the value of \[\left( {{\text{ }}cos{\text{ }}x{\text{ }} + {\text{ }}2{\text{ }}} \right){\text{ }} = {\text{ }}\dfrac{1}{t}\] . Then differentiate the substituted function with respect to $ x $ . Put the value of limit in $ x $ $ $ and then compute the new limit . As we change the integral with respect to a variable then the limit of the integral also changes .
Complete step-by-step answer:
Given : \[\mathop \smallint \limits_0^{\dfrac{\pi }{2}} \dfrac{{(1 + 2cosx)}}{{{{(2 + cosx)}^2}}}dx\]
Let $ I = \mathop \smallint \limits_0^{\dfrac{\pi }{2}} \dfrac{{(1 + 2cosx)}}{{{{(2 + cosx)}^2}}}dx $
We have to integrate $ I $ with respect to
Put \[\left( {{\text{ }}cos{\text{ }}x{\text{ }} + {\text{ }}2{\text{ }}} \right){\text{ }} = {\text{ }}\dfrac{1}{t}\]
As $ si{n^2}x + co{s^2}x = 1 $
\[\sin x = \sqrt {(1 - {{(\dfrac{1}{t} - 2)}^2})} \]
Differentiate $ t $ with respect to, we get
( derivative of \[cos{\text{ }}x{\text{ }} = {\text{ }} - {\text{ }}sin{\text{ }}x\] )
( derivative of \[constant\] \[ = {\text{ }}0\] )
( derivative $ {x^n} = n{x^{(n - 1)}} $ )
$ - \sin xdx = \dfrac{{ - 1}}{{{t^2}}}dt $
Putting values of limit in $ x $ we get the new limits
When \[x = {\text{ }}\dfrac{\pi }{2}\] then \[t{\text{ }} = {\text{ }}\dfrac{1}{2}\]
When \[x{\text{ }} = {\text{ }}0\] then \[t{\text{ }} = {\text{ }}\dfrac{1}{3}\]
Now , the integral becomes
\[I = \mathop \smallint \limits_{\dfrac{1}{3}}^{\dfrac{1}{2}} [\dfrac{{(1 + 2 \times (\dfrac{1}{t} - 2))}}{{\dfrac{1}{{{t^2}}} \times {t^2} \times \sqrt {(1 - {{(\dfrac{1}{t} - 2)}^2})} }}] dt\]
On further simplifying , we get
$ I = \mathop \smallint \limits_{\dfrac{1}{3}}^{\dfrac{1}{2}} [\dfrac{{(2 - 3t)}}{{\sqrt {( - 1 - 3{t^2} + 4t)} }}] dt $
Put $ ( - 1 - 3{t^2} + 4t) = z $
Differentiate $ z $ with respect to , we get
( derivative $ {x^n} = n{x^{(n - 1)}} $ )
Putting values of limit in $ x $ we get the new limits
When \[\;t{\text{ }} = {\text{ }}\dfrac{1}{2}\] then \[z{\text{ }} = {\text{ }}\dfrac{1}{4}\]
When \[\;t{\text{ }} = {\text{ }}\dfrac{1}{3}\] then \[z{\text{ }} = {\text{ }}0\]
Now , the integral becomes
$ I = \mathop \smallint \limits_0^{\dfrac{1}{4}} (\dfrac{1}{2})[\dfrac{1}{{\sqrt z }}] dz $
Integrating the integral we get
$ I = \mathop [\limits_0^{\dfrac{1}{4}} \sqrt z ] $
Putting the values of limit in the integral , we get
\[I{\text{ }} = {\text{ }}\dfrac{1}{2}\]
Thus , integral $ \dfrac{{(1 + 2\cos x)}}{{{{(2 + \cos x)}^2}}}dx $ from $ 0 $ to $ \dfrac{\pi }{2} $ \[ = {\text{ }}\dfrac{1}{2}\]
So, the correct answer is “Option B”.
Note: As the question was of definite integral that’s why we have not added integration constant . If the question would be of indefinite integral then we would add an integral constant to the final answer . We use the formula of By-Parts to integrate two functions of a single variable x by taking one functions as u and second function as v and then applying the formula :
\[\smallint {\text{ }}\left[ {uv} \right] {\text{ }}dx{\text{ }} = {\text{ }}u{\text{ }} \times {\text{ }}\smallint {\text{ }}\left[ v \right] {\text{ }}dx{\text{ }} - {\text{ }}\smallint \left[ {{\text{ }}\left( {{\text{ }}\dfrac{d}{{dx}}{\text{ }}u} \right){\text{ }} \times {\text{ }}\smallint {\text{ }}} \right[v\left] {\text{ }} \right] {\text{ }}dx\]
Complete step-by-step answer:
Given : \[\mathop \smallint \limits_0^{\dfrac{\pi }{2}} \dfrac{{(1 + 2cosx)}}{{{{(2 + cosx)}^2}}}dx\]
Let $ I = \mathop \smallint \limits_0^{\dfrac{\pi }{2}} \dfrac{{(1 + 2cosx)}}{{{{(2 + cosx)}^2}}}dx $
We have to integrate $ I $ with respect to
Put \[\left( {{\text{ }}cos{\text{ }}x{\text{ }} + {\text{ }}2{\text{ }}} \right){\text{ }} = {\text{ }}\dfrac{1}{t}\]
As $ si{n^2}x + co{s^2}x = 1 $
\[\sin x = \sqrt {(1 - {{(\dfrac{1}{t} - 2)}^2})} \]
Differentiate $ t $ with respect to, we get
( derivative of \[cos{\text{ }}x{\text{ }} = {\text{ }} - {\text{ }}sin{\text{ }}x\] )
( derivative of \[constant\] \[ = {\text{ }}0\] )
( derivative $ {x^n} = n{x^{(n - 1)}} $ )
$ - \sin xdx = \dfrac{{ - 1}}{{{t^2}}}dt $
Putting values of limit in $ x $ we get the new limits
When \[x = {\text{ }}\dfrac{\pi }{2}\] then \[t{\text{ }} = {\text{ }}\dfrac{1}{2}\]
When \[x{\text{ }} = {\text{ }}0\] then \[t{\text{ }} = {\text{ }}\dfrac{1}{3}\]
Now , the integral becomes
\[I = \mathop \smallint \limits_{\dfrac{1}{3}}^{\dfrac{1}{2}} [\dfrac{{(1 + 2 \times (\dfrac{1}{t} - 2))}}{{\dfrac{1}{{{t^2}}} \times {t^2} \times \sqrt {(1 - {{(\dfrac{1}{t} - 2)}^2})} }}] dt\]
On further simplifying , we get
$ I = \mathop \smallint \limits_{\dfrac{1}{3}}^{\dfrac{1}{2}} [\dfrac{{(2 - 3t)}}{{\sqrt {( - 1 - 3{t^2} + 4t)} }}] dt $
Put $ ( - 1 - 3{t^2} + 4t) = z $
Differentiate $ z $ with respect to , we get
( derivative $ {x^n} = n{x^{(n - 1)}} $ )
Putting values of limit in $ x $ we get the new limits
When \[\;t{\text{ }} = {\text{ }}\dfrac{1}{2}\] then \[z{\text{ }} = {\text{ }}\dfrac{1}{4}\]
When \[\;t{\text{ }} = {\text{ }}\dfrac{1}{3}\] then \[z{\text{ }} = {\text{ }}0\]
Now , the integral becomes
$ I = \mathop \smallint \limits_0^{\dfrac{1}{4}} (\dfrac{1}{2})[\dfrac{1}{{\sqrt z }}] dz $
Integrating the integral we get
$ I = \mathop [\limits_0^{\dfrac{1}{4}} \sqrt z ] $
Putting the values of limit in the integral , we get
\[I{\text{ }} = {\text{ }}\dfrac{1}{2}\]
Thus , integral $ \dfrac{{(1 + 2\cos x)}}{{{{(2 + \cos x)}^2}}}dx $ from $ 0 $ to $ \dfrac{\pi }{2} $ \[ = {\text{ }}\dfrac{1}{2}\]
So, the correct answer is “Option B”.
Note: As the question was of definite integral that’s why we have not added integration constant . If the question would be of indefinite integral then we would add an integral constant to the final answer . We use the formula of By-Parts to integrate two functions of a single variable x by taking one functions as u and second function as v and then applying the formula :
\[\smallint {\text{ }}\left[ {uv} \right] {\text{ }}dx{\text{ }} = {\text{ }}u{\text{ }} \times {\text{ }}\smallint {\text{ }}\left[ v \right] {\text{ }}dx{\text{ }} - {\text{ }}\smallint \left[ {{\text{ }}\left( {{\text{ }}\dfrac{d}{{dx}}{\text{ }}u} \right){\text{ }} \times {\text{ }}\smallint {\text{ }}} \right[v\left] {\text{ }} \right] {\text{ }}dx\]
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

