
Find the value of the integral
\[\int{\dfrac{{{e}^{x}}}{\sqrt{5-4{{e}^{x}}-{{e}^{2x}}}}dx}\]
(a) \[{{\cos }^{-1}}\left( \dfrac{{{e}^{x}}+2}{3} \right)+c\]
(b) \[{{\cos }^{-1}}\left( \dfrac{{{e}^{x}}-3}{2} \right)+c\]
(c) \[{{\sin }^{-1}}\left( \dfrac{{{e}^{x}}+2}{3} \right)+c\]
(d) \[{{\sin }^{-1}}\left( \dfrac{{{e}^{x}}-3}{2} \right)+c\]
Answer
606.6k+ views
Hint: First of all, take \[{{e}^{x}}=t\] and write the given integral in terms of t. Now, add and subtract 4 from the denominator to make a perfect square in the denominator. Now use, \[\int{\dfrac{dx}{\sqrt{{{a}^{2}}-{{x}^{2}}}}={{\sin }^{-1}}\dfrac{x}{a}+c}\] to get the required answer.
Complete step-by-step solution -
In this question, we have to find the value of the integral \[\int{\dfrac{{{e}^{x}}}{\sqrt{5-4{{e}^{x}}-{{e}^{2x}}}}dx}\]. Let us consider the integral given in the question.
\[I=\int{\dfrac{{{e}^{x}}}{\sqrt{5-4{{e}^{x}}-{{e}^{2x}}}}dx}.....\left( i \right)\]
Let us take \[{{e}^{x}}=t\]. We know that \[\dfrac{d}{dx}{{e}^{x}}={{e}^{x}}\]. So, by differentiating both the sides, we get,
\[{{e}^{x}}dx=dt\]
Now, by substituting x in terms of t in equation (i), we get,
\[I=\int{\dfrac{dt}{\sqrt{5-4t-{{t}^{2}}}}}\]
We can also write the above integral as,
\[I=\int{\dfrac{dt}{\sqrt{-\left( {{t}^{2}}+4t-5 \right)}}}\]
By adding and subtracting 4 from the denominator of the above equation, we get,
\[I=\int{\dfrac{dt}{\sqrt{-\left( {{t}^{2}}+4t-5 \right)+4-4}}}\]
\[I=\int{\dfrac{dt}{\sqrt{-\left( {{t}^{2}}+4t+4 \right)+5+4}}}\]
\[I=\int{\dfrac{dt}{\sqrt{9-\left( {{t}^{2}}+4t+{{2}^{2}} \right)}}}\]
We know that \[{{a}^{2}}+{{b}^{2}}+2ab={{\left( a+b \right)}^{2}}\]. By using this, we get,
\[I=\int{\dfrac{dt}{\sqrt{{{\left( 3 \right)}^{2}}-{{\left( t+2 \right)}^{2}}}}}\]
We know that \[\int{\dfrac{dx}{\sqrt{{{a}^{2}}-{{x}^{2}}}}={{\sin }^{-1}}\dfrac{x}{a}+c}\]. By using this, we get,
\[I={{\sin }^{-1}}\dfrac{\left( t+2 \right)}{3}+c\]
By separating t by \[{{e}^{x}}\], we get,
\[I={{\sin }^{-1}}\left( \dfrac{{{e}^{x}}+2}{3} \right)+c\]
Hence, option (c) is the right answer.
Note: In this question of integration containing \[{{e}^{x}}\], it is always advisable to take \[{{e}^{x}}\] as t. Also, some students make this mistake of taking the integration of \[\int{\dfrac{dx}{\sqrt{{{x}^{2}}-{{a}^{2}}}}=\dfrac{1}{a}{{\sin }^{-1}}\dfrac{x}{a}+c}\] while actually, it is \[{{\sin }^{-1}}\dfrac{x}{a}+c\]. Also, students can cross-check their answer by differentiating \[{{\sin }^{-1}}\left( \dfrac{{{e}^{x}}+2}{3} \right)+c\] and checking if it is equal to the expression given initially or not.
Complete step-by-step solution -
In this question, we have to find the value of the integral \[\int{\dfrac{{{e}^{x}}}{\sqrt{5-4{{e}^{x}}-{{e}^{2x}}}}dx}\]. Let us consider the integral given in the question.
\[I=\int{\dfrac{{{e}^{x}}}{\sqrt{5-4{{e}^{x}}-{{e}^{2x}}}}dx}.....\left( i \right)\]
Let us take \[{{e}^{x}}=t\]. We know that \[\dfrac{d}{dx}{{e}^{x}}={{e}^{x}}\]. So, by differentiating both the sides, we get,
\[{{e}^{x}}dx=dt\]
Now, by substituting x in terms of t in equation (i), we get,
\[I=\int{\dfrac{dt}{\sqrt{5-4t-{{t}^{2}}}}}\]
We can also write the above integral as,
\[I=\int{\dfrac{dt}{\sqrt{-\left( {{t}^{2}}+4t-5 \right)}}}\]
By adding and subtracting 4 from the denominator of the above equation, we get,
\[I=\int{\dfrac{dt}{\sqrt{-\left( {{t}^{2}}+4t-5 \right)+4-4}}}\]
\[I=\int{\dfrac{dt}{\sqrt{-\left( {{t}^{2}}+4t+4 \right)+5+4}}}\]
\[I=\int{\dfrac{dt}{\sqrt{9-\left( {{t}^{2}}+4t+{{2}^{2}} \right)}}}\]
We know that \[{{a}^{2}}+{{b}^{2}}+2ab={{\left( a+b \right)}^{2}}\]. By using this, we get,
\[I=\int{\dfrac{dt}{\sqrt{{{\left( 3 \right)}^{2}}-{{\left( t+2 \right)}^{2}}}}}\]
We know that \[\int{\dfrac{dx}{\sqrt{{{a}^{2}}-{{x}^{2}}}}={{\sin }^{-1}}\dfrac{x}{a}+c}\]. By using this, we get,
\[I={{\sin }^{-1}}\dfrac{\left( t+2 \right)}{3}+c\]
By separating t by \[{{e}^{x}}\], we get,
\[I={{\sin }^{-1}}\left( \dfrac{{{e}^{x}}+2}{3} \right)+c\]
Hence, option (c) is the right answer.
Note: In this question of integration containing \[{{e}^{x}}\], it is always advisable to take \[{{e}^{x}}\] as t. Also, some students make this mistake of taking the integration of \[\int{\dfrac{dx}{\sqrt{{{x}^{2}}-{{a}^{2}}}}=\dfrac{1}{a}{{\sin }^{-1}}\dfrac{x}{a}+c}\] while actually, it is \[{{\sin }^{-1}}\dfrac{x}{a}+c\]. Also, students can cross-check their answer by differentiating \[{{\sin }^{-1}}\left( \dfrac{{{e}^{x}}+2}{3} \right)+c\] and checking if it is equal to the expression given initially or not.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

