
Find the value of the determinant
\[\left| \begin{matrix}
18 & 41 & 89 \\
40 & 89 & 198 \\
89 & 198 & 440 \\
\end{matrix} \right|\]
Answer
517.5k+ views
Hint: Expand the given determinant about any row or column. Expansion of a determinant
$\left| \begin{matrix}
{{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\
{{a}_{3}} & {{b}_{3}} & {{c}_{3}} \\
\end{matrix} \right|$ is given along the first row of the determinant as
${{a}_{1}}({{b}_{2}}{{c}_{3}}-{{c}_{2}}{{b}_{3}})-{{b}_{1}}({{a}_{2}}{{c}_{3}}-{{a}_{3}}{{c}_{2}})+{{c}_{1}}({{a}_{2}}{{b}_{3}}-{{a}_{3}}{{b}_{2}})$
Complete step-by-step answer:
Let us suppose the value of given determinant be D. So, we get
$D$= $\left| \begin{matrix}
18 & 40 & 89 \\
40 & 89 & 198 \\
89 & 198 & 440 \\
\end{matrix} \right|$ ………………. (i)
As, we know any determinant can be expanded about any of the row and column of that determinant in the following way:-
Let us suppose we have a determinant as
$\vartriangle =\left| \begin{matrix}
{{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\
{{a}_{3}} & {{b}_{3}} & {{c}_{3}} \\
\end{matrix} \right|$
We can expand this determinant about the first row as
${{a}_{1}}({{b}_{2}}{{c}_{3}}-{{b}_{3}}{{c}_{2}})-{{b}_{1}}({{a}_{2}}{{c}_{3}}-{{a}_{3}}{{c}_{2}})+{{c}_{1}}({{a}_{2}}{{b}_{3}}-{{b}_{2}}{{a}_{3}})$ ………….. (ii)
So, we can expand the given determinant in equation with the help of equation (ii) as (about first row):-
$D=\left| \begin{matrix}
18 & 40 & 89 \\
40 & 89 & 198 \\
89 & 198 & 440 \\
\end{matrix} \right|$
$D=18(39160-39204)-40(17600-17622)+89(7920-7921)$
On further simplifying the above expression, we get
$D=18(-44)-40(-22)+89(-1)$
$D=-1$
Hence, the value of the given determinant is -1.
So, we get $\left| \begin{matrix}
18 & 40 & 89 \\
40 & 89 & 198 \\
89 & 198 & 440 \\
\end{matrix} \right|=-1$
Note: Instead of doing above lengthy calculations we can perform operations on rows or columns of the determinant to convert their elements to smaller numbers and then expand the determinant along the most suitable row or column , This method will actually save a lot of time if the right operations click to you.
$\left| \begin{matrix}
{{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\
{{a}_{3}} & {{b}_{3}} & {{c}_{3}} \\
\end{matrix} \right|$ is given along the first row of the determinant as
${{a}_{1}}({{b}_{2}}{{c}_{3}}-{{c}_{2}}{{b}_{3}})-{{b}_{1}}({{a}_{2}}{{c}_{3}}-{{a}_{3}}{{c}_{2}})+{{c}_{1}}({{a}_{2}}{{b}_{3}}-{{a}_{3}}{{b}_{2}})$
Complete step-by-step answer:
Let us suppose the value of given determinant be D. So, we get
$D$= $\left| \begin{matrix}
18 & 40 & 89 \\
40 & 89 & 198 \\
89 & 198 & 440 \\
\end{matrix} \right|$ ………………. (i)
As, we know any determinant can be expanded about any of the row and column of that determinant in the following way:-
Let us suppose we have a determinant as
$\vartriangle =\left| \begin{matrix}
{{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\
{{a}_{3}} & {{b}_{3}} & {{c}_{3}} \\
\end{matrix} \right|$
We can expand this determinant about the first row as
${{a}_{1}}({{b}_{2}}{{c}_{3}}-{{b}_{3}}{{c}_{2}})-{{b}_{1}}({{a}_{2}}{{c}_{3}}-{{a}_{3}}{{c}_{2}})+{{c}_{1}}({{a}_{2}}{{b}_{3}}-{{b}_{2}}{{a}_{3}})$ ………….. (ii)
So, we can expand the given determinant in equation with the help of equation (ii) as (about first row):-
$D=\left| \begin{matrix}
18 & 40 & 89 \\
40 & 89 & 198 \\
89 & 198 & 440 \\
\end{matrix} \right|$
$D=18(39160-39204)-40(17600-17622)+89(7920-7921)$
On further simplifying the above expression, we get
$D=18(-44)-40(-22)+89(-1)$
$D=-1$
Hence, the value of the given determinant is -1.
So, we get $\left| \begin{matrix}
18 & 40 & 89 \\
40 & 89 & 198 \\
89 & 198 & 440 \\
\end{matrix} \right|=-1$
Note: Instead of doing above lengthy calculations we can perform operations on rows or columns of the determinant to convert their elements to smaller numbers and then expand the determinant along the most suitable row or column , This method will actually save a lot of time if the right operations click to you.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

Most of the Sinhalaspeaking people in Sri Lanka are class 12 social science CBSE

Give 10 examples of unisexual and bisexual flowers

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Write a short note on Franklands reaction class 12 chemistry CBSE
