
Find the value of $ \tan \left( {{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right) + {{\tan }^{ - 1}}\left( {\dfrac{2}{3}} \right)} \right) $
Answer
582.6k+ views
Hint: Convert $ {\cos ^{ - 1}} $ into $ {\tan ^{ - 1}} $ and then use the formula of inverse trigonometric functions to solve the question. We also use tan(A+B) to arrive at the result.
Complete step-by-step answer:
We need to find the value of
$ \tan \left( {{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right) + {{\tan }^{ - 1}}\left( {\dfrac{2}{3}} \right)} \right) $ . . . (1)
Let $ {\cos ^{ - 1}}\left( {\dfrac{4}{5}} \right) = \theta $
By taking cosec to both the sides, we get
$ \cos \left( {{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right) = \cos \theta $
$ \Rightarrow \dfrac{4}{5} = \cos \theta $ $ \left( {\because \cos ({{\cos }^{ - 1}}x) = x, - 1 \leqslant x \leqslant 1} \right) $
Rearranging it, we get
$ \Rightarrow \cos \theta = \dfrac{4}{5} $
Taking square to both the sides, we get
$ {\cos ^2}\theta = {\left( {\dfrac{4}{5}} \right)^2} $
$ \Rightarrow {\cos ^2}\theta = \dfrac{{16}}{{25}} $
Taking reciprocal, we get
$ \dfrac{1}{{{{\cos }^2}\theta }} = \dfrac{{25}}{{16}} $
$ \Rightarrow {\sec ^2}\theta = \dfrac{{25}}{{16}} $ $ \left( {\because \sec \theta = \dfrac{1}{{\cos \theta }}} \right) $
$ \Rightarrow 1 + {\tan ^2}\theta = \dfrac{{25}}{{16}} $ $ \left( {\because {{\sec }^2}\theta = 1 + {{\tan }^2}\theta } \right) $
Simplifying it, we get
$ {\tan ^2}\theta = \dfrac{{25}}{{16}} - 1 $
$ \Rightarrow {\tan ^2}\theta = \dfrac{{25 - 16}}{{16}} $
$ \Rightarrow {\tan ^2}\theta = \dfrac{9}{{16}} $
By taking square root to both the sides, we get
$ \Rightarrow \tan \theta = \dfrac{3}{4} $
Taking $ {\tan ^{ - 1}} $ to both the sides, we get
$ {\tan ^{ - 1}}\left( {\tan \theta } \right) = {\tan ^{ - 1}}\left( {\dfrac{3}{4}} \right) $
$ \Rightarrow \theta = {\tan ^{ - 1}}\left( {\dfrac{3}{4}} \right) $ $ \left( {\because {{\tan }^{ - 1}}(\tan \theta ) = \theta } \right) $
Therefore, $ {\cos ^{ - 1}}\left( {\dfrac{4}{5}} \right) = \theta = {\tan ^{ - 1}}\left( {\dfrac{3}{4}} \right) $
Put this value in equation (1)
$ \Rightarrow \tan \left( {{{\cos }^{ - 1}}\left( {\dfrac{3}{4}} \right) + {{\tan }^{ - 1}}\dfrac{2}{3}} \right) $
$ = \tan \left( {{{\tan }^{ - 1}}\left( {\dfrac{3}{4}} \right) + {{\tan }^{ - 1}}\dfrac{2}{3}} \right) $
$ = \tan \left\{ {{{\tan }^{ - 1}}\left( {\dfrac{{\dfrac{3}{4} + \dfrac{2}{3}}}{{1 - \dfrac{3}{4} \times \dfrac{2}{3}}}} \right)} \right\} $ $ \left( {\because {{\tan }^{ - 1}}x + {{\tan }^{ - 1}}y = {{\tan }^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right)} \right) $
By simplifying the above equation, we get
$ = \tan \left\{ {{{\tan }^{ - 1}}\left( {\dfrac{{\dfrac{{9 + 8}}{{12}}}}{{1 - \dfrac{1}{2}}}} \right)} \right\} $
$ = \tan \left\{ {{{\tan }^{ - 1}}\left( {\dfrac{{\dfrac{{17}}{{12}}}}{{\dfrac{1}{2}}}} \right)} \right\} $
$ = \tan \left\{ {{{\tan }^{ - 1}}\left( {\dfrac{{17}}{{12}} \times 2} \right)} \right\} $
$ = \tan \left[ {{{\tan }^{ - 1}}\left( {\dfrac{{17}}{6}} \right)} \right] $
$ = \dfrac{{17}}{6} $ $ \left( {\because \tan ({{\tan }^{ - 1}}x) = x} \right) $
Therefore, the value of $ \tan \left( {{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right) + {{\tan }^{ - 1}}\left( {\dfrac{2}{3}} \right)} \right) = \dfrac{{17}}{6} $
Note: To solve such types of questions, first think about the formula that could be used to solve the question. Like in this question, all the terms were in $ \tan $ except one term. So it was clear that the formula that has $ {\tan ^{ - 1}} $ in it should be used. And for that, we converted $ {\cos ^{ - 1}} $ into $ {\tan ^{ - 1}} $ .
Complete step-by-step answer:
We need to find the value of
$ \tan \left( {{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right) + {{\tan }^{ - 1}}\left( {\dfrac{2}{3}} \right)} \right) $ . . . (1)
Let $ {\cos ^{ - 1}}\left( {\dfrac{4}{5}} \right) = \theta $
By taking cosec to both the sides, we get
$ \cos \left( {{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right) = \cos \theta $
$ \Rightarrow \dfrac{4}{5} = \cos \theta $ $ \left( {\because \cos ({{\cos }^{ - 1}}x) = x, - 1 \leqslant x \leqslant 1} \right) $
Rearranging it, we get
$ \Rightarrow \cos \theta = \dfrac{4}{5} $
Taking square to both the sides, we get
$ {\cos ^2}\theta = {\left( {\dfrac{4}{5}} \right)^2} $
$ \Rightarrow {\cos ^2}\theta = \dfrac{{16}}{{25}} $
Taking reciprocal, we get
$ \dfrac{1}{{{{\cos }^2}\theta }} = \dfrac{{25}}{{16}} $
$ \Rightarrow {\sec ^2}\theta = \dfrac{{25}}{{16}} $ $ \left( {\because \sec \theta = \dfrac{1}{{\cos \theta }}} \right) $
$ \Rightarrow 1 + {\tan ^2}\theta = \dfrac{{25}}{{16}} $ $ \left( {\because {{\sec }^2}\theta = 1 + {{\tan }^2}\theta } \right) $
Simplifying it, we get
$ {\tan ^2}\theta = \dfrac{{25}}{{16}} - 1 $
$ \Rightarrow {\tan ^2}\theta = \dfrac{{25 - 16}}{{16}} $
$ \Rightarrow {\tan ^2}\theta = \dfrac{9}{{16}} $
By taking square root to both the sides, we get
$ \Rightarrow \tan \theta = \dfrac{3}{4} $
Taking $ {\tan ^{ - 1}} $ to both the sides, we get
$ {\tan ^{ - 1}}\left( {\tan \theta } \right) = {\tan ^{ - 1}}\left( {\dfrac{3}{4}} \right) $
$ \Rightarrow \theta = {\tan ^{ - 1}}\left( {\dfrac{3}{4}} \right) $ $ \left( {\because {{\tan }^{ - 1}}(\tan \theta ) = \theta } \right) $
Therefore, $ {\cos ^{ - 1}}\left( {\dfrac{4}{5}} \right) = \theta = {\tan ^{ - 1}}\left( {\dfrac{3}{4}} \right) $
Put this value in equation (1)
$ \Rightarrow \tan \left( {{{\cos }^{ - 1}}\left( {\dfrac{3}{4}} \right) + {{\tan }^{ - 1}}\dfrac{2}{3}} \right) $
$ = \tan \left( {{{\tan }^{ - 1}}\left( {\dfrac{3}{4}} \right) + {{\tan }^{ - 1}}\dfrac{2}{3}} \right) $
$ = \tan \left\{ {{{\tan }^{ - 1}}\left( {\dfrac{{\dfrac{3}{4} + \dfrac{2}{3}}}{{1 - \dfrac{3}{4} \times \dfrac{2}{3}}}} \right)} \right\} $ $ \left( {\because {{\tan }^{ - 1}}x + {{\tan }^{ - 1}}y = {{\tan }^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right)} \right) $
By simplifying the above equation, we get
$ = \tan \left\{ {{{\tan }^{ - 1}}\left( {\dfrac{{\dfrac{{9 + 8}}{{12}}}}{{1 - \dfrac{1}{2}}}} \right)} \right\} $
$ = \tan \left\{ {{{\tan }^{ - 1}}\left( {\dfrac{{\dfrac{{17}}{{12}}}}{{\dfrac{1}{2}}}} \right)} \right\} $
$ = \tan \left\{ {{{\tan }^{ - 1}}\left( {\dfrac{{17}}{{12}} \times 2} \right)} \right\} $
$ = \tan \left[ {{{\tan }^{ - 1}}\left( {\dfrac{{17}}{6}} \right)} \right] $
$ = \dfrac{{17}}{6} $ $ \left( {\because \tan ({{\tan }^{ - 1}}x) = x} \right) $
Therefore, the value of $ \tan \left( {{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right) + {{\tan }^{ - 1}}\left( {\dfrac{2}{3}} \right)} \right) = \dfrac{{17}}{6} $
Note: To solve such types of questions, first think about the formula that could be used to solve the question. Like in this question, all the terms were in $ \tan $ except one term. So it was clear that the formula that has $ {\tan ^{ - 1}} $ in it should be used. And for that, we converted $ {\cos ^{ - 1}} $ into $ {\tan ^{ - 1}} $ .
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

