
Find the value of ${{\tan }^{-1}}\left( \tan \dfrac{5\pi }{6} \right)+{{\cos }^{-1}}\left( \cos \dfrac{13\pi }{6} \right)$
Answer
579.6k+ views
Hint: Now first we will convert the given equation by writing $\dfrac{5\pi }{6}=\pi -\dfrac{\pi }{6}$ and $\dfrac{13\pi }{6}=2\pi +\dfrac{\pi }{6}$ . Now we know that $\tan \left( \pi -\theta \right)=-\tan \theta $ and $\cos \left( 2\pi +\theta \right)=\cos \theta $ . Hence we can convert the given expression using these results. Now in the obtained expression we can apply the property$\tan \left( -\theta \right)=-\tan \theta $ . After this we will have a simplified expression in the form of tan and cos. Now we will use the property that ${{\tan }^{-1}}\left( \tan x \right)=x;x\in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right)$ and similarly \[{{\cos }^{-1}}\left( \cos x \right)=x;x\in \left( 0,2\pi \right)\]. Hence we will get the value of the given expression.
Complete step by step answer:
Now first let us consider the given expression.
We have ${{\tan }^{-1}}\left( \tan \dfrac{5\pi }{6} \right)+{{\cos }^{-1}}\left( \cos \dfrac{13\pi }{6} \right)$
First we know that $\dfrac{5\pi }{6}\notin \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right)$ and also $\dfrac{13\pi }{6}\notin \left( 0,2\pi \right)$ . So first we will convert the given angles to simplify the given expression.
To do so we can write $\dfrac{5\pi }{6}=\pi -\dfrac{\pi }{6}$ and $\dfrac{13\pi }{6}=2\pi +\dfrac{\pi }{6}$
Hence we get the above expression as ${{\tan }^{-1}}\left( \tan \left( \pi -\dfrac{\pi }{6} \right) \right)+{{\cos }^{-1}}\left( \cos \left( 2\pi +\dfrac{\pi }{6} \right) \right)$
Now we know the property of tan that $\tan \left( \pi -\theta \right)=-\tan \theta $ similarly we know that $\cos \left( 2\pi +\theta \right)=\cos \theta $ .
Hence using this properties we can rewrite the above expression as
${{\tan }^{-1}}\left( -\tan \left( \dfrac{\pi }{6} \right) \right)+{{\cos }^{-1}}\left( \cos \left( \dfrac{\pi }{6} \right) \right)$
Now again we know that $\tan \left( -\theta \right)=-\tan \theta $ , using this result in the above expression we get.
${{\tan }^{-1}}\left( \tan \left( -\dfrac{\pi }{6} \right) \right)+{{\cos }^{-1}}\left( \cos \left( \dfrac{\pi }{6} \right) \right)$
Now we know that $-\dfrac{\pi }{2}<-\dfrac{\pi }{6}<\dfrac{\pi }{2}$ and \[0<\dfrac{\pi }{6}<2\pi \]
Hence we can say $-\dfrac{\pi }{6}\in \left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)$ and $\dfrac{\pi }{6}\in \left( 0,2\pi \right)$
Now we know that for all $x\in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right)$ ${{\tan }^{-1}}\left( \tan x \right)=x$ and for all \[x\in \left( 0,2\pi \right)\] \[{{\cos }^{-1}}\left( \cos x \right)=x\] .
Hence using this property in the above expression we get.
$-\dfrac{\pi }{6}+\dfrac{\pi }{6}=0$
Hence finally we get the value of expression ${{\tan }^{-1}}\left( \tan \dfrac{5\pi }{6} \right)+{{\cos }^{-1}}\left( \cos \dfrac{13\pi }{6} \right)$ is 0.
Note: Now by looking at the given expression we can make the mistake by writing
${{\cos }^{-1}}\left( \cos \dfrac{13\pi }{6} \right)=\dfrac{13\pi }{6}$ and ${{\tan }^{-1}}\left( \tan \dfrac{5\pi }{6} \right)=\dfrac{5\pi }{6}$ and hence we will get the final answer as $\dfrac{5\pi }{6}+\dfrac{13\pi }{6}=\dfrac{18\pi }{6}=3\pi $ . This will be wrong since that $\dfrac{5\pi }{6}\notin \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right)$ and also $\dfrac{13\pi }{6}\notin \left( 0,2\pi \right)$ . Hence not that for ${{\tan }^{-1}}\left( \tan x \right)=x$ we must have $x\in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right)$ and similarly for ${{\cos }^{-1}}\left( \cos x \right)=x$ we must have \[x\in \left( 0,2\pi \right)\] . Note that inverse function is only possible when the function is bijective, hence we have to consider the domain and codomain of the function accordingly.
Complete step by step answer:
Now first let us consider the given expression.
We have ${{\tan }^{-1}}\left( \tan \dfrac{5\pi }{6} \right)+{{\cos }^{-1}}\left( \cos \dfrac{13\pi }{6} \right)$
First we know that $\dfrac{5\pi }{6}\notin \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right)$ and also $\dfrac{13\pi }{6}\notin \left( 0,2\pi \right)$ . So first we will convert the given angles to simplify the given expression.
To do so we can write $\dfrac{5\pi }{6}=\pi -\dfrac{\pi }{6}$ and $\dfrac{13\pi }{6}=2\pi +\dfrac{\pi }{6}$
Hence we get the above expression as ${{\tan }^{-1}}\left( \tan \left( \pi -\dfrac{\pi }{6} \right) \right)+{{\cos }^{-1}}\left( \cos \left( 2\pi +\dfrac{\pi }{6} \right) \right)$
Now we know the property of tan that $\tan \left( \pi -\theta \right)=-\tan \theta $ similarly we know that $\cos \left( 2\pi +\theta \right)=\cos \theta $ .
Hence using this properties we can rewrite the above expression as
${{\tan }^{-1}}\left( -\tan \left( \dfrac{\pi }{6} \right) \right)+{{\cos }^{-1}}\left( \cos \left( \dfrac{\pi }{6} \right) \right)$
Now again we know that $\tan \left( -\theta \right)=-\tan \theta $ , using this result in the above expression we get.
${{\tan }^{-1}}\left( \tan \left( -\dfrac{\pi }{6} \right) \right)+{{\cos }^{-1}}\left( \cos \left( \dfrac{\pi }{6} \right) \right)$
Now we know that $-\dfrac{\pi }{2}<-\dfrac{\pi }{6}<\dfrac{\pi }{2}$ and \[0<\dfrac{\pi }{6}<2\pi \]
Hence we can say $-\dfrac{\pi }{6}\in \left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)$ and $\dfrac{\pi }{6}\in \left( 0,2\pi \right)$
Now we know that for all $x\in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right)$ ${{\tan }^{-1}}\left( \tan x \right)=x$ and for all \[x\in \left( 0,2\pi \right)\] \[{{\cos }^{-1}}\left( \cos x \right)=x\] .
Hence using this property in the above expression we get.
$-\dfrac{\pi }{6}+\dfrac{\pi }{6}=0$
Hence finally we get the value of expression ${{\tan }^{-1}}\left( \tan \dfrac{5\pi }{6} \right)+{{\cos }^{-1}}\left( \cos \dfrac{13\pi }{6} \right)$ is 0.
Note: Now by looking at the given expression we can make the mistake by writing
${{\cos }^{-1}}\left( \cos \dfrac{13\pi }{6} \right)=\dfrac{13\pi }{6}$ and ${{\tan }^{-1}}\left( \tan \dfrac{5\pi }{6} \right)=\dfrac{5\pi }{6}$ and hence we will get the final answer as $\dfrac{5\pi }{6}+\dfrac{13\pi }{6}=\dfrac{18\pi }{6}=3\pi $ . This will be wrong since that $\dfrac{5\pi }{6}\notin \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right)$ and also $\dfrac{13\pi }{6}\notin \left( 0,2\pi \right)$ . Hence not that for ${{\tan }^{-1}}\left( \tan x \right)=x$ we must have $x\in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right)$ and similarly for ${{\cos }^{-1}}\left( \cos x \right)=x$ we must have \[x\in \left( 0,2\pi \right)\] . Note that inverse function is only possible when the function is bijective, hence we have to consider the domain and codomain of the function accordingly.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

