
Find the value of ${{\tan }^{-1}}\left( \dfrac{1}{2} \right)+{{\tan }^{-1}}\left( \dfrac{1}{3} \right)$
Answer
579.6k+ views
Hint: In this question, we have to find the value of ${{\tan }^{-1}}\left( \dfrac{1}{2} \right)+{{\tan }^{-1}}\left( \dfrac{1}{3} \right)$. We will first suppose both of the terms as separate variables and then use the property of tan(A+B) to simplify and evaluate the given terms. Formula which we will use is given by:
\[\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}\]
We will also use the basic value of $\tan \theta $ for finding our final answer.
Complete step by step answer:
Here we are given \[{{\tan }^{-1}}\left( \dfrac{1}{2} \right)+{{\tan }^{-1}}\left( \dfrac{1}{3} \right)\]
To evaluate them easily, let us suppose value of ${{\tan }^{-1}}\left( \dfrac{1}{2} \right)=A\text{ and }{{\tan }^{-1}}\left( \dfrac{1}{3} \right)=B$
Let us take tan on both sides in both terms, we get:
\[\tan \left( {{\tan }^{-1}}\dfrac{1}{2} \right)=\tan A\text{ and }\tan \left( {{\tan }^{-1}}\dfrac{1}{3} \right)=\tan B\]
Since tan and ${{\tan }^{-1}}$ are inverse terms, therefore they cancel out each other and we get:
\[\tan A=\dfrac{1}{2}\text{ and }\tan B=\dfrac{1}{3}\]
Now as we know,
\[\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}\]
Putting values of tanA and tanB in above equation, we get:
\[\tan \left( A+B \right)=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}}{1-\left( \dfrac{1}{2} \right)\left( \dfrac{1}{3} \right)}\]
Now, let us take LCM on numerator we get:
\[\begin{align}
& \dfrac{1}{2}+\dfrac{1}{3}=\dfrac{3+2}{6}=\dfrac{5}{6} \\
& \Rightarrow \tan \left( A+B \right)=\dfrac{\dfrac{5}{6}}{1-\dfrac{1}{6}} \\
\end{align}\]
Now, let us take LCM on denominator, we get:
\[\begin{align}
& 1-\dfrac{1}{6}=\dfrac{6-1}{6}=\dfrac{5}{6} \\
& \therefore \tan \left( A+B \right)=\dfrac{\dfrac{5}{6}}{\dfrac{5}{6}} \\
\end{align}\]
As we can see numerator and denominator are the same, so value becomes 1.
Hence, tan(A+B)=1.
Now, let us take ${{\tan }^{-1}}$ on both sides, we get:
\[\begin{align}
& {{\tan }^{-1}}\tan \left( A+B \right)={{\tan }^{-1}}1 \\
& \Rightarrow A+B={{\tan }^{-1}}1 \\
\end{align}\]
We have supposed earlier that ${{\tan }^{-1}}\left( \dfrac{1}{2} \right)=A\text{ and }{{\tan }^{-1}}\left( \dfrac{1}{3} \right)=B$. Hence, putting those values in above, we get:
\[{{\tan }^{-1}}\left( \dfrac{1}{2} \right)+{{\tan }^{-1}}\left( \dfrac{1}{3} \right)={{\tan }^{-1}}1\]
As we take $\tan \dfrac{\pi }{4}=1$. Therefore, taking ${{\tan }^{-1}}$ on both sides we get:
\[\begin{align}
& {{\tan }^{-1}}\tan \dfrac{\pi }{4}={{\tan }^{-1}}1 \\
& \therefore {{\tan }^{-1}}1=\dfrac{\pi }{4} \\
\end{align}\]
Putting this value in above expression, we get:
\[{{\tan }^{-1}}\left( \dfrac{1}{2} \right)+{{\tan }^{-1}}\left( \dfrac{1}{3} \right)=\dfrac{\pi }{4}\]
Hence, value of \[{{\tan }^{-1}}\left( \dfrac{1}{2} \right)+{{\tan }^{-1}}\left( \dfrac{1}{3} \right)=\dfrac{\pi }{4}\].
Note: Students should carefully perform calculations without getting confused between tan and ${{\tan }^{-1}}$. Students can directly learn the formula of ${{\tan }^{-1}}x+{{\tan }^{-1}}y$ which is given as
\[{{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)\]
Students should also learn basic values of $\tan \theta $ such as \[\tan {{0}^{4}}=0,\tan \dfrac{\pi }{6}=\dfrac{1}{\sqrt{3}},\tan \dfrac{\pi }{4}=1\text{ and }\tan \dfrac{\pi }{3}=\sqrt{3}\]. Students should keep in mind that tan(A+B) is not just equal to tanA + tanB. But there exists proper formula for finding tan(A+B) which is
\[\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}\]
\[\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}\]
We will also use the basic value of $\tan \theta $ for finding our final answer.
Complete step by step answer:
Here we are given \[{{\tan }^{-1}}\left( \dfrac{1}{2} \right)+{{\tan }^{-1}}\left( \dfrac{1}{3} \right)\]
To evaluate them easily, let us suppose value of ${{\tan }^{-1}}\left( \dfrac{1}{2} \right)=A\text{ and }{{\tan }^{-1}}\left( \dfrac{1}{3} \right)=B$
Let us take tan on both sides in both terms, we get:
\[\tan \left( {{\tan }^{-1}}\dfrac{1}{2} \right)=\tan A\text{ and }\tan \left( {{\tan }^{-1}}\dfrac{1}{3} \right)=\tan B\]
Since tan and ${{\tan }^{-1}}$ are inverse terms, therefore they cancel out each other and we get:
\[\tan A=\dfrac{1}{2}\text{ and }\tan B=\dfrac{1}{3}\]
Now as we know,
\[\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}\]
Putting values of tanA and tanB in above equation, we get:
\[\tan \left( A+B \right)=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}}{1-\left( \dfrac{1}{2} \right)\left( \dfrac{1}{3} \right)}\]
Now, let us take LCM on numerator we get:
\[\begin{align}
& \dfrac{1}{2}+\dfrac{1}{3}=\dfrac{3+2}{6}=\dfrac{5}{6} \\
& \Rightarrow \tan \left( A+B \right)=\dfrac{\dfrac{5}{6}}{1-\dfrac{1}{6}} \\
\end{align}\]
Now, let us take LCM on denominator, we get:
\[\begin{align}
& 1-\dfrac{1}{6}=\dfrac{6-1}{6}=\dfrac{5}{6} \\
& \therefore \tan \left( A+B \right)=\dfrac{\dfrac{5}{6}}{\dfrac{5}{6}} \\
\end{align}\]
As we can see numerator and denominator are the same, so value becomes 1.
Hence, tan(A+B)=1.
Now, let us take ${{\tan }^{-1}}$ on both sides, we get:
\[\begin{align}
& {{\tan }^{-1}}\tan \left( A+B \right)={{\tan }^{-1}}1 \\
& \Rightarrow A+B={{\tan }^{-1}}1 \\
\end{align}\]
We have supposed earlier that ${{\tan }^{-1}}\left( \dfrac{1}{2} \right)=A\text{ and }{{\tan }^{-1}}\left( \dfrac{1}{3} \right)=B$. Hence, putting those values in above, we get:
\[{{\tan }^{-1}}\left( \dfrac{1}{2} \right)+{{\tan }^{-1}}\left( \dfrac{1}{3} \right)={{\tan }^{-1}}1\]
As we take $\tan \dfrac{\pi }{4}=1$. Therefore, taking ${{\tan }^{-1}}$ on both sides we get:
\[\begin{align}
& {{\tan }^{-1}}\tan \dfrac{\pi }{4}={{\tan }^{-1}}1 \\
& \therefore {{\tan }^{-1}}1=\dfrac{\pi }{4} \\
\end{align}\]
Putting this value in above expression, we get:
\[{{\tan }^{-1}}\left( \dfrac{1}{2} \right)+{{\tan }^{-1}}\left( \dfrac{1}{3} \right)=\dfrac{\pi }{4}\]
Hence, value of \[{{\tan }^{-1}}\left( \dfrac{1}{2} \right)+{{\tan }^{-1}}\left( \dfrac{1}{3} \right)=\dfrac{\pi }{4}\].
Note: Students should carefully perform calculations without getting confused between tan and ${{\tan }^{-1}}$. Students can directly learn the formula of ${{\tan }^{-1}}x+{{\tan }^{-1}}y$ which is given as
\[{{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)\]
Students should also learn basic values of $\tan \theta $ such as \[\tan {{0}^{4}}=0,\tan \dfrac{\pi }{6}=\dfrac{1}{\sqrt{3}},\tan \dfrac{\pi }{4}=1\text{ and }\tan \dfrac{\pi }{3}=\sqrt{3}\]. Students should keep in mind that tan(A+B) is not just equal to tanA + tanB. But there exists proper formula for finding tan(A+B) which is
\[\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}\]
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

