
Find the value of $\sin {{120}^{0}}\cos {{150}^{0}}-\cos {{240}^{0}}\sin {{330}^{0}}$ .
(a) $1$
(b) $-1$
(c) $\dfrac{2}{3}$
(d) $-\left( \dfrac{\sqrt{3}+1}{4} \right)$
Answer
590.4k+ views
Hint: For solving this problem we will use certain formulas and then put the correct values in the given expression and choose the correct option.
Complete step by step answer:
Given:
We have to calculate the value of $\sin {{120}^{0}}\cos {{150}^{0}}-\cos {{240}^{0}}\sin {{330}^{0}}$ .
We will use the following formulas to solve this question:
$\begin{align}
& \sin {{30}^{0}}=\dfrac{1}{2}.............\left( 1 \right) \\
& \cos {{30}^{0}}=\dfrac{\sqrt{3}}{2}..........\left( 2 \right) \\
& \cos {{60}^{0}}=\dfrac{1}{2}.............\left( 3 \right) \\
& \sin \left( {{90}^{0}}+\theta \right)=\cos \theta ..........\left( 4 \right) \\
& \cos \left( {{180}^{0}}-\theta \right)=-\cos \theta ...........\left( 5 \right) \\
& \cos \left( {{180}^{0}}+\theta \right)=-\cos \theta ............\left( 6 \right) \\
& \sin \left( {{360}^{0}}-\theta \right)=-\sin \theta .............\left( 7 \right) \\
\end{align}$
Now, we will use the above formulas to solve this question.
First, we will find the value of $\sin {{120}^{0}}$ , $\cos {{150}^{0}}$ , $\cos {{240}^{0}}$ and $\sin {{330}^{0}}$ .
Now, we can write, $\sin {{120}^{0}}=\sin \left( {{90}^{0}}+{{30}^{0}} \right)$ so, using (4) and (2). Then,
$\sin {{120}^{0}}=\cos {{30}^{0}}=\dfrac{\sqrt{3}}{2}.............\left( 8 \right)$
Now, we can write, $\cos {{150}^{0}}=\cos \left( {{180}^{0}}-{{30}^{0}} \right)$ so, using (5) and (2). Then,
$\cos {{150}^{0}}=-\cos {{30}^{0}}=-\dfrac{\sqrt{3}}{2}...............\left( 9 \right)$
Now, we can write, $\cos {{240}^{0}}=\cos \left( {{180}^{0}}+{{60}^{0}} \right)$ so, using (6) and (3). Then,
$\cos {{240}^{0}}=-\cos {{60}^{0}}=-\dfrac{1}{2}............(10)$
Now, we can write, $\sin {{330}^{0}}=\sin \left( {{360}^{0}}-{{30}^{0}} \right)$ so, using (7) and (1). Then,
$\sin {{330}^{0}}=-\sin {{30}^{0}}=-\dfrac{1}{2}.............\left( 11 \right)$
Now, we can evaluate the value of $\sin {{120}^{0}}\cos {{150}^{0}}-\cos {{240}^{0}}\sin {{330}^{0}}$ by substituting the value of each term from equation (8), (9), (10) and (11). Then,
$\begin{align}
& \sin {{120}^{0}}\cos {{150}^{0}}-\cos {{240}^{0}}\sin {{330}^{0}} \\
& \Rightarrow \dfrac{\sqrt{3}}{2}\times \left( -\dfrac{\sqrt{3}}{2} \right)-\left( -\dfrac{1}{2} \right)\times \left( -\dfrac{1}{2} \right) \\
& \Rightarrow -\dfrac{3}{4}-\dfrac{1}{2} \\
& \Rightarrow -1 \\
\end{align}$
Thus, finally, we can write that, $\sin {{120}^{0}}\cos {{150}^{0}}-\cos {{240}^{0}}\sin {{330}^{0}}=-1$ .
Hence, (b) is the correct option.
Note: Although the problem is very easy to solve but here, the student must take care of signs of the values while doing substitution for each term and we should use the formulae correctly and should also do the calculations without any mistake. So, we get the correct answer.
Complete step by step answer:
Given:
We have to calculate the value of $\sin {{120}^{0}}\cos {{150}^{0}}-\cos {{240}^{0}}\sin {{330}^{0}}$ .
We will use the following formulas to solve this question:
$\begin{align}
& \sin {{30}^{0}}=\dfrac{1}{2}.............\left( 1 \right) \\
& \cos {{30}^{0}}=\dfrac{\sqrt{3}}{2}..........\left( 2 \right) \\
& \cos {{60}^{0}}=\dfrac{1}{2}.............\left( 3 \right) \\
& \sin \left( {{90}^{0}}+\theta \right)=\cos \theta ..........\left( 4 \right) \\
& \cos \left( {{180}^{0}}-\theta \right)=-\cos \theta ...........\left( 5 \right) \\
& \cos \left( {{180}^{0}}+\theta \right)=-\cos \theta ............\left( 6 \right) \\
& \sin \left( {{360}^{0}}-\theta \right)=-\sin \theta .............\left( 7 \right) \\
\end{align}$
Now, we will use the above formulas to solve this question.
First, we will find the value of $\sin {{120}^{0}}$ , $\cos {{150}^{0}}$ , $\cos {{240}^{0}}$ and $\sin {{330}^{0}}$ .
Now, we can write, $\sin {{120}^{0}}=\sin \left( {{90}^{0}}+{{30}^{0}} \right)$ so, using (4) and (2). Then,
$\sin {{120}^{0}}=\cos {{30}^{0}}=\dfrac{\sqrt{3}}{2}.............\left( 8 \right)$
Now, we can write, $\cos {{150}^{0}}=\cos \left( {{180}^{0}}-{{30}^{0}} \right)$ so, using (5) and (2). Then,
$\cos {{150}^{0}}=-\cos {{30}^{0}}=-\dfrac{\sqrt{3}}{2}...............\left( 9 \right)$
Now, we can write, $\cos {{240}^{0}}=\cos \left( {{180}^{0}}+{{60}^{0}} \right)$ so, using (6) and (3). Then,
$\cos {{240}^{0}}=-\cos {{60}^{0}}=-\dfrac{1}{2}............(10)$
Now, we can write, $\sin {{330}^{0}}=\sin \left( {{360}^{0}}-{{30}^{0}} \right)$ so, using (7) and (1). Then,
$\sin {{330}^{0}}=-\sin {{30}^{0}}=-\dfrac{1}{2}.............\left( 11 \right)$
Now, we can evaluate the value of $\sin {{120}^{0}}\cos {{150}^{0}}-\cos {{240}^{0}}\sin {{330}^{0}}$ by substituting the value of each term from equation (8), (9), (10) and (11). Then,
$\begin{align}
& \sin {{120}^{0}}\cos {{150}^{0}}-\cos {{240}^{0}}\sin {{330}^{0}} \\
& \Rightarrow \dfrac{\sqrt{3}}{2}\times \left( -\dfrac{\sqrt{3}}{2} \right)-\left( -\dfrac{1}{2} \right)\times \left( -\dfrac{1}{2} \right) \\
& \Rightarrow -\dfrac{3}{4}-\dfrac{1}{2} \\
& \Rightarrow -1 \\
\end{align}$
Thus, finally, we can write that, $\sin {{120}^{0}}\cos {{150}^{0}}-\cos {{240}^{0}}\sin {{330}^{0}}=-1$ .
Hence, (b) is the correct option.
Note: Although the problem is very easy to solve but here, the student must take care of signs of the values while doing substitution for each term and we should use the formulae correctly and should also do the calculations without any mistake. So, we get the correct answer.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

