
Find the value of $\sin (105^\circ ) + \cos (105^\circ )$.
A) $\dfrac{1}{2}$
B) $\dfrac{3}{2}$
C) $\sqrt 2 $
D) $\dfrac{1}{{\sqrt 2 }}$
Answer
578.1k+ views
Hint: We have trigonometric equations for finding $\sin (A + B)$ and $\cos (A + B)$. The given angle, $105^\circ $ can be written as the sum of $60^\circ $ and $45^\circ $. Thus we can apply the sum equations and substitute the known values. Then by simplifying the equation we get the answer.
Formula used: For any angles $A,B$we have,
$\sin (A + B) = \sin A\cos B + \cos A\sin B$
$\cos (A + B) = \cos A\cos B - \sin A\sin B$
$\sin 45^\circ = \dfrac{1}{{\sqrt 2 }}$
$\sin 60^\circ = \dfrac{{\sqrt 3 }}{2}$
$\cos 45^\circ = \dfrac{1}{{\sqrt 2 }}$
$\cos 60^\circ = \dfrac{1}{2}$
Complete step-by-step answer:
We are asked to find the value of $\sin (105^\circ ) + \cos (105^\circ )$.
We can write $105$as the sum of $60^\circ $ and $45^\circ $.
Thus we get,
$\sin (105^\circ ) = \sin (60^\circ + 45^\circ )$
$\cos (105^\circ ) = \cos (60^\circ + 45^\circ )$
For any angles $A,B$we have,
$\sin (A + B) = \sin A\cos B + \cos A\sin B$
$\cos (A + B) = \cos A\cos B - \sin A\sin B$
We can substitute $A = 60^\circ ,B = 45^\circ $ in the above two equations.
So we have,
$\sin (60^\circ + 45^\circ ) = \sin 60^\circ \cos 45^\circ + \cos 60^\circ \sin 45^\circ - - - (i)$
$\cos (60^\circ + 45^\circ ) = \cos 60^\circ \cos 45^\circ - \sin 60^\circ \sin 45^\circ - - - (ii)$
Also we know these trigonometric values.
$\sin 45^\circ = \dfrac{1}{{\sqrt 2 }}$
$\sin 60^\circ = \dfrac{{\sqrt 3 }}{2}$
$\cos 45^\circ = \dfrac{1}{{\sqrt 2 }}$
$\cos 60^\circ = \dfrac{1}{2}$
Substituting these values in the above equations we have,
$(i) \Rightarrow \sin (60^\circ + 45^\circ ) = \dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{2} \times \dfrac{1}{{\sqrt 2 }}$
Simplifying the expression we get,
$ \Rightarrow \sin (60^\circ + 45^\circ ) = \dfrac{{\sqrt 3 }}{{2\sqrt 2 }} + \dfrac{1}{{2\sqrt 2 }}$
$ \Rightarrow \sin (60^\circ + 45^\circ ) = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}$
$(ii) \Rightarrow \cos (60^\circ + 45^\circ ) = \dfrac{1}{2} \times \dfrac{1}{{\sqrt 2 }} - \dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{{\sqrt 2 }}$
Simplifying the expression we get,
$ \Rightarrow \cos (60^\circ + 45^\circ ) = \dfrac{1}{{2\sqrt 2 }} - \dfrac{{\sqrt 3 }}{{2\sqrt 2 }}$
$ \Rightarrow \cos (60^\circ + 45^\circ ) = \dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }}$
We need to find the value of $\sin (105^\circ ) + \cos (105^\circ )$.
We have,
$\sin (105^\circ ) = \sin (60^\circ + 45^\circ )$
$\cos (105^\circ ) = \cos (60^\circ + 45^\circ )$
And
$\sin (60^\circ + 45^\circ ) = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}$
$\cos (60^\circ + 45^\circ ) = \dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }}$
Combining these two results, we get
$\sin (105^\circ ) = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}$
$\cos (105^\circ ) = \dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }}$
So we have,
$\sin (105^\circ ) + \cos (105^\circ ) = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }} + \dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }}$
Simplifying the right hand side we get,
$\sin (105^\circ ) + \cos (105^\circ ) = \dfrac{{\sqrt 3 + 1 + 1 - \sqrt 3 }}{{2\sqrt 2 }}$
$ \Rightarrow \sin (105^\circ ) + \cos (105^\circ ) = \dfrac{2}{{2\sqrt 2 }}$
Dividing numerator and denominator by $2$ we get,
$ \Rightarrow \sin (105^\circ ) + \cos (105^\circ ) = \dfrac{1}{{\sqrt 2 }}$
$\therefore $ The answer is option D.
Note: Here we get the answer as $\dfrac{1}{{\sqrt 2 }}$ which belongs to the options. In some cases, instead of giving the answer directly, we may give it in another way. This value $\dfrac{1}{{\sqrt 2 }}$ is equal to $\sin 45^\circ $ and $\cos 45^\circ $. So, any of these answers, if there are options will be correct. Also the given angle $105^\circ $ can be split into a sum in different ways. But we particularly chose $60^\circ + 45^\circ $, since trigonometric values are known for these angles. So we could substitute them and simplify to get the answer.
Formula used: For any angles $A,B$we have,
$\sin (A + B) = \sin A\cos B + \cos A\sin B$
$\cos (A + B) = \cos A\cos B - \sin A\sin B$
$\sin 45^\circ = \dfrac{1}{{\sqrt 2 }}$
$\sin 60^\circ = \dfrac{{\sqrt 3 }}{2}$
$\cos 45^\circ = \dfrac{1}{{\sqrt 2 }}$
$\cos 60^\circ = \dfrac{1}{2}$
Complete step-by-step answer:
We are asked to find the value of $\sin (105^\circ ) + \cos (105^\circ )$.
We can write $105$as the sum of $60^\circ $ and $45^\circ $.
Thus we get,
$\sin (105^\circ ) = \sin (60^\circ + 45^\circ )$
$\cos (105^\circ ) = \cos (60^\circ + 45^\circ )$
For any angles $A,B$we have,
$\sin (A + B) = \sin A\cos B + \cos A\sin B$
$\cos (A + B) = \cos A\cos B - \sin A\sin B$
We can substitute $A = 60^\circ ,B = 45^\circ $ in the above two equations.
So we have,
$\sin (60^\circ + 45^\circ ) = \sin 60^\circ \cos 45^\circ + \cos 60^\circ \sin 45^\circ - - - (i)$
$\cos (60^\circ + 45^\circ ) = \cos 60^\circ \cos 45^\circ - \sin 60^\circ \sin 45^\circ - - - (ii)$
Also we know these trigonometric values.
$\sin 45^\circ = \dfrac{1}{{\sqrt 2 }}$
$\sin 60^\circ = \dfrac{{\sqrt 3 }}{2}$
$\cos 45^\circ = \dfrac{1}{{\sqrt 2 }}$
$\cos 60^\circ = \dfrac{1}{2}$
Substituting these values in the above equations we have,
$(i) \Rightarrow \sin (60^\circ + 45^\circ ) = \dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{2} \times \dfrac{1}{{\sqrt 2 }}$
Simplifying the expression we get,
$ \Rightarrow \sin (60^\circ + 45^\circ ) = \dfrac{{\sqrt 3 }}{{2\sqrt 2 }} + \dfrac{1}{{2\sqrt 2 }}$
$ \Rightarrow \sin (60^\circ + 45^\circ ) = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}$
$(ii) \Rightarrow \cos (60^\circ + 45^\circ ) = \dfrac{1}{2} \times \dfrac{1}{{\sqrt 2 }} - \dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{{\sqrt 2 }}$
Simplifying the expression we get,
$ \Rightarrow \cos (60^\circ + 45^\circ ) = \dfrac{1}{{2\sqrt 2 }} - \dfrac{{\sqrt 3 }}{{2\sqrt 2 }}$
$ \Rightarrow \cos (60^\circ + 45^\circ ) = \dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }}$
We need to find the value of $\sin (105^\circ ) + \cos (105^\circ )$.
We have,
$\sin (105^\circ ) = \sin (60^\circ + 45^\circ )$
$\cos (105^\circ ) = \cos (60^\circ + 45^\circ )$
And
$\sin (60^\circ + 45^\circ ) = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}$
$\cos (60^\circ + 45^\circ ) = \dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }}$
Combining these two results, we get
$\sin (105^\circ ) = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}$
$\cos (105^\circ ) = \dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }}$
So we have,
$\sin (105^\circ ) + \cos (105^\circ ) = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }} + \dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }}$
Simplifying the right hand side we get,
$\sin (105^\circ ) + \cos (105^\circ ) = \dfrac{{\sqrt 3 + 1 + 1 - \sqrt 3 }}{{2\sqrt 2 }}$
$ \Rightarrow \sin (105^\circ ) + \cos (105^\circ ) = \dfrac{2}{{2\sqrt 2 }}$
Dividing numerator and denominator by $2$ we get,
$ \Rightarrow \sin (105^\circ ) + \cos (105^\circ ) = \dfrac{1}{{\sqrt 2 }}$
$\therefore $ The answer is option D.
Note: Here we get the answer as $\dfrac{1}{{\sqrt 2 }}$ which belongs to the options. In some cases, instead of giving the answer directly, we may give it in another way. This value $\dfrac{1}{{\sqrt 2 }}$ is equal to $\sin 45^\circ $ and $\cos 45^\circ $. So, any of these answers, if there are options will be correct. Also the given angle $105^\circ $ can be split into a sum in different ways. But we particularly chose $60^\circ + 45^\circ $, since trigonometric values are known for these angles. So we could substitute them and simplify to get the answer.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Draw the diagram showing the germination of pollen class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

