
Find the value of ‘p’ for which the vectors \[\vec a = 3\hat i + 2\hat j + 9\hat k\] and \[\vec b = \hat i + p\hat j + 3\hat k\] are parallel.
Answer
561.9k+ views
Hint: To solve this problem use the property of the parallel vector. The parallel vectors have the same direction. The components of one vector must be in the same ratio to the corresponding components of the parallel vector.
If the two vectors \[\vec a = {a_1}\hat i + {a_2}\hat j + {a_3}\hat k\] and \[\vec b = {b_1}\hat i + {b_2}\hat j + {b_3}\hat k\] are parallel then,
$\dfrac{{{a_1}}}{{{b_1}}} = \dfrac{{{a_2}}}{{{b_2}}} = \dfrac{{{a_3}}}{{{b_3}}}$
Substitute the value , \[{a_1} = 3,{a_2} = 2,{a_3} = 9\]and \[{b_1} = 1,{b_2} = p,{b_3} = 3\]into $\dfrac{{{a_1}}}{{{b_1}}} = \dfrac{{{a_2}}}{{{b_2}}} = \dfrac{{{a_3}}}{{{b_3}}}$ . Solve the two ratios which gives the value of $p$.
Complete step-by-step solution:
Consider the two vectors \[\vec a = 3\hat i + 2\hat j + 9\hat k\] and \[\vec b = \hat i + p\hat j + 3\hat k\]. We know that, If the two vectors \[\vec a = {a_1}\hat i + {a_2}\hat j + {a_3}\hat k\] and \[\vec b = {b_1}\hat i + {b_2}\hat j + {b_3}\hat k\] are parallel then,
$\dfrac{{{a_1}}}{{{b_1}}} = \dfrac{{{a_2}}}{{{b_2}}} = \dfrac{{{a_3}}}{{{b_3}}}$
Substitute the value , \[{a_1} = 3,{a_2} = 2,{a_3} = 9\]and \[{b_1} = 1,{b_2} = p,{b_3} = 3\]into the above relation.
$ \Rightarrow \dfrac{3}{1} = \dfrac{2}{p} = \dfrac{9}{3}$
Solve the ratio, $\dfrac{3}{1} = \dfrac{2}{p}$ we get,
$p = \dfrac{2}{3}$
The value of ‘p’ for which the vectors \[\vec a = 3\hat i + 2\hat j + 9\hat k\] and \[\vec b = \hat i + p\hat j + 3\hat k\] are parallel is $\dfrac{2}{3}$.
Note: Two vectors are parallel if they are scalar multiples of one another.
If u and v are two non-zero vectors and $u = \lambda v$ , then u and v are parallel.
The two vectors \[\vec a = 3\hat i + 2\hat j + 9\hat k\] and \[\vec b = \hat i + p\hat j + 3\hat k\] are parallel then,
\[3\hat i + 2\hat j + 9\hat k = \lambda (\hat i + p\hat j + 3\hat k)\]
$ \Rightarrow 3\hat i + 2\hat j + 9\hat k = \lambda \hat i + p\lambda \hat j + 3\lambda \hat k$
\[ \Rightarrow 3 = \lambda ,2 = p\lambda ,9 = 3\lambda \]
Substitute $\lambda = 3$ into \[2 = p\lambda \] we get,
\[2 = 3p\]
$ \Rightarrow p = \dfrac{2}{3}$
If the two vectors \[\vec a = {a_1}\hat i + {a_2}\hat j + {a_3}\hat k\] and \[\vec b = {b_1}\hat i + {b_2}\hat j + {b_3}\hat k\] are parallel then,
$\dfrac{{{a_1}}}{{{b_1}}} = \dfrac{{{a_2}}}{{{b_2}}} = \dfrac{{{a_3}}}{{{b_3}}}$
Substitute the value , \[{a_1} = 3,{a_2} = 2,{a_3} = 9\]and \[{b_1} = 1,{b_2} = p,{b_3} = 3\]into $\dfrac{{{a_1}}}{{{b_1}}} = \dfrac{{{a_2}}}{{{b_2}}} = \dfrac{{{a_3}}}{{{b_3}}}$ . Solve the two ratios which gives the value of $p$.
Complete step-by-step solution:
Consider the two vectors \[\vec a = 3\hat i + 2\hat j + 9\hat k\] and \[\vec b = \hat i + p\hat j + 3\hat k\]. We know that, If the two vectors \[\vec a = {a_1}\hat i + {a_2}\hat j + {a_3}\hat k\] and \[\vec b = {b_1}\hat i + {b_2}\hat j + {b_3}\hat k\] are parallel then,
$\dfrac{{{a_1}}}{{{b_1}}} = \dfrac{{{a_2}}}{{{b_2}}} = \dfrac{{{a_3}}}{{{b_3}}}$
Substitute the value , \[{a_1} = 3,{a_2} = 2,{a_3} = 9\]and \[{b_1} = 1,{b_2} = p,{b_3} = 3\]into the above relation.
$ \Rightarrow \dfrac{3}{1} = \dfrac{2}{p} = \dfrac{9}{3}$
Solve the ratio, $\dfrac{3}{1} = \dfrac{2}{p}$ we get,
$p = \dfrac{2}{3}$
The value of ‘p’ for which the vectors \[\vec a = 3\hat i + 2\hat j + 9\hat k\] and \[\vec b = \hat i + p\hat j + 3\hat k\] are parallel is $\dfrac{2}{3}$.
Note: Two vectors are parallel if they are scalar multiples of one another.
If u and v are two non-zero vectors and $u = \lambda v$ , then u and v are parallel.
The two vectors \[\vec a = 3\hat i + 2\hat j + 9\hat k\] and \[\vec b = \hat i + p\hat j + 3\hat k\] are parallel then,
\[3\hat i + 2\hat j + 9\hat k = \lambda (\hat i + p\hat j + 3\hat k)\]
$ \Rightarrow 3\hat i + 2\hat j + 9\hat k = \lambda \hat i + p\lambda \hat j + 3\lambda \hat k$
\[ \Rightarrow 3 = \lambda ,2 = p\lambda ,9 = 3\lambda \]
Substitute $\lambda = 3$ into \[2 = p\lambda \] we get,
\[2 = 3p\]
$ \Rightarrow p = \dfrac{2}{3}$
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

