
Find the value of n such that,
(i) ${}^{n}{{P}_{5}}=42\times {}^{n}{{P}_{3}},n>4$
(ii) $\dfrac{{}^{n}{{P}_{4}}}{{}^{n-1}{{P}_{4}}}=\dfrac{5}{3},n>4$
Answer
607.8k+ views
Hint: We will first start by using the property that ${}^{n}{{P}_{r}}=\dfrac{n!}{\left( n-r \right)!}$ in part (i) and solve it to find the value of n. Then we will similarly solve the part (ii) by using the formula ${}^{n}{{P}_{r}}=\dfrac{n!}{\left( n-r \right)!}$ and simplify.
Complete step-by-step answer:
Now, we will first solve the part (i) ${}^{n}{{P}_{5}}=42\times {}^{n}{{P}_{3}},n>4$
Now, we know that the identity ${}^{n}{{P}_{r}}=\dfrac{n!}{\left( n-r \right)!}$.
So, using this we have,
$\dfrac{n!}{\left( n-5 \right)!}=42\times \dfrac{n!}{\left( n-3 \right)!}$
Now, we will cross multiply the expression and cancel n! in numerator and denominator,
$\begin{align}
& \dfrac{n!\times \left( n-3 \right)!}{\left( n-5 \right)!\times n!}=42 \\
& \dfrac{\left( n-3 \right)!}{\left( n-5 \right)!}=42 \\
\end{align}$
Now, we know that,
$\begin{align}
& \left( n-3 \right)!=\left( n-5 \right)!\left( n-4 \right)\left( n-3 \right) \\
& =\dfrac{\left( n-5 \right)!\left( n-4 \right)\left( n-3 \right)}{\left( n-5 \right)!}=42 \\
& =\left( n-4 \right)\left( n-3 \right)=42 \\
\end{align}$
Now, we will expand the left side of the equation. So, we have,
$\begin{align}
& {{n}^{2}}-7n+12=42 \\
& {{n}^{2}}-7n+12-42=0 \\
& {{n}^{2}}-7n-30=0 \\
\end{align}$
Now, we will split the middle term as a sum of 30.
$\begin{align}
& {{n}^{2}}-10n+3n-30=0 \\
& n\left( n-10 \right)+3\left( n-10 \right)=0 \\
& \left( n+3 \right)\left( n-10 \right)=0 \\
& either\ n+3=0\ or\ n-10=0 \\
& \Rightarrow n=-3\ or\ n=10 \\
\end{align}$
Since, n > 4 has been given to us, therefore $n\ne -3\ and\ n=10$.
Now, in part (ii) we have $\dfrac{{}^{n}{{P}_{4}}}{{}^{n-1}{{P}_{4}}}=\dfrac{5}{3},n>4$.
Similarly, we will use ${}^{n}{{P}_{r}}=\dfrac{n!}{\left( n-r \right)!}$. So, we have,
$\begin{align}
& \dfrac{\dfrac{n!}{\left( n-4 \right)!}}{\dfrac{\left( n-1 \right)!}{\left( n-5 \right)!}}=\dfrac{5}{3} \\
& \dfrac{n!\times \left( n-5 \right)!}{\left( n-4 \right)!\times \left( n-1 \right)!}=\dfrac{5}{3} \\
\end{align}$
Now, we will write,
\[\begin{align}
& n!=\left( n-1 \right)!\times n \\
& \left( n-4 \right)!=\left( n-5 \right)!\times \left( n-4 \right) \\
& \dfrac{\left( n-1 \right)!\times n\times \left( n-5 \right)!}{\left( n-5 \right)!\times \left( n-4 \right)\times \left( n-1 \right)!}=\dfrac{5}{3} \\
& \dfrac{n}{n-4}=\dfrac{5}{3} \\
\end{align}\]
Now, on cross – multiply we have,
$\begin{align}
& 3n=5\left( n-4 \right) \\
& 3{{n}}-5n-20=0 \\
& \Rightarrow 3n=5n-20 \\
& 20=5n-3n \\
& 2n=20 \\
& n=10 \\
\end{align}$
So, the value of n is 10 for part (ii).
Note: It is important to note that while solving the first part we have used the factorization method to solve the quadratic equation and in the second part we have a linear equation to find the value of n. Also, it is important to note that we have used the fact $n!=\left( n-1 \right)n$ to solve both parts.
Complete step-by-step answer:
Now, we will first solve the part (i) ${}^{n}{{P}_{5}}=42\times {}^{n}{{P}_{3}},n>4$
Now, we know that the identity ${}^{n}{{P}_{r}}=\dfrac{n!}{\left( n-r \right)!}$.
So, using this we have,
$\dfrac{n!}{\left( n-5 \right)!}=42\times \dfrac{n!}{\left( n-3 \right)!}$
Now, we will cross multiply the expression and cancel n! in numerator and denominator,
$\begin{align}
& \dfrac{n!\times \left( n-3 \right)!}{\left( n-5 \right)!\times n!}=42 \\
& \dfrac{\left( n-3 \right)!}{\left( n-5 \right)!}=42 \\
\end{align}$
Now, we know that,
$\begin{align}
& \left( n-3 \right)!=\left( n-5 \right)!\left( n-4 \right)\left( n-3 \right) \\
& =\dfrac{\left( n-5 \right)!\left( n-4 \right)\left( n-3 \right)}{\left( n-5 \right)!}=42 \\
& =\left( n-4 \right)\left( n-3 \right)=42 \\
\end{align}$
Now, we will expand the left side of the equation. So, we have,
$\begin{align}
& {{n}^{2}}-7n+12=42 \\
& {{n}^{2}}-7n+12-42=0 \\
& {{n}^{2}}-7n-30=0 \\
\end{align}$
Now, we will split the middle term as a sum of 30.
$\begin{align}
& {{n}^{2}}-10n+3n-30=0 \\
& n\left( n-10 \right)+3\left( n-10 \right)=0 \\
& \left( n+3 \right)\left( n-10 \right)=0 \\
& either\ n+3=0\ or\ n-10=0 \\
& \Rightarrow n=-3\ or\ n=10 \\
\end{align}$
Since, n > 4 has been given to us, therefore $n\ne -3\ and\ n=10$.
Now, in part (ii) we have $\dfrac{{}^{n}{{P}_{4}}}{{}^{n-1}{{P}_{4}}}=\dfrac{5}{3},n>4$.
Similarly, we will use ${}^{n}{{P}_{r}}=\dfrac{n!}{\left( n-r \right)!}$. So, we have,
$\begin{align}
& \dfrac{\dfrac{n!}{\left( n-4 \right)!}}{\dfrac{\left( n-1 \right)!}{\left( n-5 \right)!}}=\dfrac{5}{3} \\
& \dfrac{n!\times \left( n-5 \right)!}{\left( n-4 \right)!\times \left( n-1 \right)!}=\dfrac{5}{3} \\
\end{align}$
Now, we will write,
\[\begin{align}
& n!=\left( n-1 \right)!\times n \\
& \left( n-4 \right)!=\left( n-5 \right)!\times \left( n-4 \right) \\
& \dfrac{\left( n-1 \right)!\times n\times \left( n-5 \right)!}{\left( n-5 \right)!\times \left( n-4 \right)\times \left( n-1 \right)!}=\dfrac{5}{3} \\
& \dfrac{n}{n-4}=\dfrac{5}{3} \\
\end{align}\]
Now, on cross – multiply we have,
$\begin{align}
& 3n=5\left( n-4 \right) \\
& 3{{n}}-5n-20=0 \\
& \Rightarrow 3n=5n-20 \\
& 20=5n-3n \\
& 2n=20 \\
& n=10 \\
\end{align}$
So, the value of n is 10 for part (ii).
Note: It is important to note that while solving the first part we have used the factorization method to solve the quadratic equation and in the second part we have a linear equation to find the value of n. Also, it is important to note that we have used the fact $n!=\left( n-1 \right)n$ to solve both parts.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

