
Find the value of $\left( {}^{n}{{C}_{0}} \right)\left( {}^{n}{{C}_{1}} \right)+\left( {}^{n}{{C}_{1}} \right)\left( {}^{n}{{C}_{2}} \right)+.....+\left( {}^{n}{{C}_{n-1}} \right)\left( {}^{n}{{C}_{n}} \right)$.
Answer
558.9k+ views
Hint: We first try to find the binomial expansion of ${{\left( 1+x \right)}^{n}}$. We then try to rearrange this into higher power to lower power terms and change the coefficient of the terms using the method of combination where ${}^{n}{{C}_{r}}={}^{n}{{C}_{n-r}}$. Then we take multiplication of those two and find the coefficients of ${{x}^{n-1}}$.
Complete step-by-step answer:
We know that the formula of the binomial expansion is
${{\left( 1+x \right)}^{n}}={}^{n}{{C}_{0}}+{}^{n}{{C}_{1}}x+{}^{n}{{C}_{2}}{{x}^{2}}+.....+{}^{n}{{C}_{n-1}}{{x}^{n-1}}+{}^{n}{{C}_{n}}{{x}^{n}}......(i)$.
We can rearrange the terms and start with the maximum power of x first and the form will be
${{\left( 1+x \right)}^{n}}={}^{n}{{C}_{n}}{{x}^{n}}+{}^{n}{{C}_{n-1}}{{x}^{n-1}}+.....+{}^{n}{{C}_{2}}{{x}^{2}}+{}^{n}{{C}_{1}}x+{}^{n}{{C}_{0}}$.
We change coefficient of the terms using the method of combination where ${}^{n}{{C}_{r}}={}^{n}{{C}_{n-r}}$.
${{\left( 1+x \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{n}}+{}^{n}{{C}_{1}}{{x}^{n-1}}+.....+{}^{n}{{C}_{n-2}}{{x}^{2}}+{}^{n}{{C}_{n-1}}x+{}^{n}{{C}_{n}}......(ii)$
Both arrangements have $\left( n+1 \right)$ terms in their expansion.
We take multiplication of those two equations.
$\begin{align}
& {{\left( 1+x \right)}^{n}}{{\left( 1+x \right)}^{n}} \\
& =\left( {}^{n}{{C}_{0}}+{}^{n}{{C}_{1}}x+{}^{n}{{C}_{2}}{{x}^{2}}+.....+{}^{n}{{C}_{n-1}}{{x}^{n-1}}+{}^{n}{{C}_{n}}{{x}^{n}} \right)\left( {}^{n}{{C}_{0}}{{x}^{n}}+{}^{n}{{C}_{1}}{{x}^{n-1}}+.....+{}^{n}{{C}_{n-2}}{{x}^{2}}+{}^{n}{{C}_{n-1}}x+{}^{n}{{C}_{n}} \right) \\
\end{align}$
Now from the long multiplication we try to find the term of x with power $\left( n-1 \right)$.
The power $\left( n-1 \right)$ of x is created from the multiplication of ${{x}^{0}}$ and ${{x}^{n-1}}$, ${{x}^{1}}$ and ${{x}^{n-2}}$, ${{x}^{2}}$ and ${{x}^{n-3}}$, ……., ${{x}^{n-1}}$ and ${{x}^{0}}$.
We only deal with the term of x with power $\left( n-1 \right)$ on both sides.
On the left side the term ${{x}^{n-1}}$ is the ${{n}^{th}}$ term of ${{\left( 1+x \right)}^{n}}{{\left( 1+x \right)}^{n}}={{\left( 1+x \right)}^{2n}}$ which is ${}^{2n}{{C}_{n-1}}{{x}^{n-1}}$.
On the right side we have
$\begin{align}
& \left( {}^{n}{{C}_{0}}{{x}^{0}} \right)\left( {}^{n}{{C}_{1}}{{x}^{n-1}} \right)+\left( {}^{n}{{C}_{1}}{{x}^{1}} \right)\left( {}^{n}{{C}_{2}}{{x}^{n-2}} \right)+.....+\left( {}^{n}{{C}_{n-1}}{{x}^{n-1}} \right)\left( {}^{n}{{C}_{n}}{{x}^{0}} \right) \\
& \Rightarrow \left( {}^{n}{{C}_{0}} \right)\left( {}^{n}{{C}_{1}} \right){{x}^{n-1}}+\left( {}^{n}{{C}_{1}} \right)\left( {}^{n}{{C}_{2}} \right){{x}^{n-1}}+.....+\left( {}^{n}{{C}_{n-1}} \right)\left( {}^{n}{{C}_{n}} \right){{x}^{n-1}} \\
& \Rightarrow \left[ \left( {}^{n}{{C}_{0}} \right)\left( {}^{n}{{C}_{1}} \right)+\left( {}^{n}{{C}_{1}} \right)\left( {}^{n}{{C}_{2}} \right)+.....+\left( {}^{n}{{C}_{n-1}} \right)\left( {}^{n}{{C}_{n}} \right) \right]{{x}^{n-1}} \\
\end{align}$
We equate both sides’ term of x with power $\left( n-1 \right)$.
\[\begin{align}
& \left[ \left( {}^{n}{{C}_{0}} \right)\left( {}^{n}{{C}_{1}} \right)+\left( {}^{n}{{C}_{1}} \right)\left( {}^{n}{{C}_{2}} \right)+.....+\left( {}^{n}{{C}_{n-1}} \right)\left( {}^{n}{{C}_{n}} \right) \right]{{x}^{n-1}}={}^{2n}{{C}_{n-1}}{{x}^{n-1}} \\
& \Rightarrow \left( {}^{n}{{C}_{0}} \right)\left( {}^{n}{{C}_{1}} \right)+\left( {}^{n}{{C}_{1}} \right)\left( {}^{n}{{C}_{2}} \right)+.....+\left( {}^{n}{{C}_{n-1}} \right)\left( {}^{n}{{C}_{n}} \right)={}^{2n}{{C}_{n-1}} \\
\end{align}\]
So, the coefficients are same and the value of $\left( {}^{n}{{C}_{0}} \right)\left( {}^{n}{{C}_{1}} \right)+\left( {}^{n}{{C}_{1}} \right)\left( {}^{n}{{C}_{2}} \right)+.....+\left( {}^{n}{{C}_{n-1}} \right)\left( {}^{n}{{C}_{n}} \right)$ is ${}^{2n}{{C}_{n-1}}{{x}^{n-1}}$.
Note: We need to remember solving the general term of the series $\left( {}^{n}{{C}_{0}} \right)\left( {}^{n}{{C}_{1}} \right)+\left( {}^{n}{{C}_{1}} \right)\left( {}^{n}{{C}_{2}} \right)+.....+\left( {}^{n}{{C}_{n-1}} \right)\left( {}^{n}{{C}_{n}} \right)$ and then find the summation will never solve it. The coefficients are broken into particular patterns and that can only be solved by multiplication of the expansions. There won't be any other coefficients of ${{x}^{n-1}}$ other than those we have already taken into account.
Complete step-by-step answer:
We know that the formula of the binomial expansion is
${{\left( 1+x \right)}^{n}}={}^{n}{{C}_{0}}+{}^{n}{{C}_{1}}x+{}^{n}{{C}_{2}}{{x}^{2}}+.....+{}^{n}{{C}_{n-1}}{{x}^{n-1}}+{}^{n}{{C}_{n}}{{x}^{n}}......(i)$.
We can rearrange the terms and start with the maximum power of x first and the form will be
${{\left( 1+x \right)}^{n}}={}^{n}{{C}_{n}}{{x}^{n}}+{}^{n}{{C}_{n-1}}{{x}^{n-1}}+.....+{}^{n}{{C}_{2}}{{x}^{2}}+{}^{n}{{C}_{1}}x+{}^{n}{{C}_{0}}$.
We change coefficient of the terms using the method of combination where ${}^{n}{{C}_{r}}={}^{n}{{C}_{n-r}}$.
${{\left( 1+x \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{n}}+{}^{n}{{C}_{1}}{{x}^{n-1}}+.....+{}^{n}{{C}_{n-2}}{{x}^{2}}+{}^{n}{{C}_{n-1}}x+{}^{n}{{C}_{n}}......(ii)$
Both arrangements have $\left( n+1 \right)$ terms in their expansion.
We take multiplication of those two equations.
$\begin{align}
& {{\left( 1+x \right)}^{n}}{{\left( 1+x \right)}^{n}} \\
& =\left( {}^{n}{{C}_{0}}+{}^{n}{{C}_{1}}x+{}^{n}{{C}_{2}}{{x}^{2}}+.....+{}^{n}{{C}_{n-1}}{{x}^{n-1}}+{}^{n}{{C}_{n}}{{x}^{n}} \right)\left( {}^{n}{{C}_{0}}{{x}^{n}}+{}^{n}{{C}_{1}}{{x}^{n-1}}+.....+{}^{n}{{C}_{n-2}}{{x}^{2}}+{}^{n}{{C}_{n-1}}x+{}^{n}{{C}_{n}} \right) \\
\end{align}$
Now from the long multiplication we try to find the term of x with power $\left( n-1 \right)$.
The power $\left( n-1 \right)$ of x is created from the multiplication of ${{x}^{0}}$ and ${{x}^{n-1}}$, ${{x}^{1}}$ and ${{x}^{n-2}}$, ${{x}^{2}}$ and ${{x}^{n-3}}$, ……., ${{x}^{n-1}}$ and ${{x}^{0}}$.
We only deal with the term of x with power $\left( n-1 \right)$ on both sides.
On the left side the term ${{x}^{n-1}}$ is the ${{n}^{th}}$ term of ${{\left( 1+x \right)}^{n}}{{\left( 1+x \right)}^{n}}={{\left( 1+x \right)}^{2n}}$ which is ${}^{2n}{{C}_{n-1}}{{x}^{n-1}}$.
On the right side we have
$\begin{align}
& \left( {}^{n}{{C}_{0}}{{x}^{0}} \right)\left( {}^{n}{{C}_{1}}{{x}^{n-1}} \right)+\left( {}^{n}{{C}_{1}}{{x}^{1}} \right)\left( {}^{n}{{C}_{2}}{{x}^{n-2}} \right)+.....+\left( {}^{n}{{C}_{n-1}}{{x}^{n-1}} \right)\left( {}^{n}{{C}_{n}}{{x}^{0}} \right) \\
& \Rightarrow \left( {}^{n}{{C}_{0}} \right)\left( {}^{n}{{C}_{1}} \right){{x}^{n-1}}+\left( {}^{n}{{C}_{1}} \right)\left( {}^{n}{{C}_{2}} \right){{x}^{n-1}}+.....+\left( {}^{n}{{C}_{n-1}} \right)\left( {}^{n}{{C}_{n}} \right){{x}^{n-1}} \\
& \Rightarrow \left[ \left( {}^{n}{{C}_{0}} \right)\left( {}^{n}{{C}_{1}} \right)+\left( {}^{n}{{C}_{1}} \right)\left( {}^{n}{{C}_{2}} \right)+.....+\left( {}^{n}{{C}_{n-1}} \right)\left( {}^{n}{{C}_{n}} \right) \right]{{x}^{n-1}} \\
\end{align}$
We equate both sides’ term of x with power $\left( n-1 \right)$.
\[\begin{align}
& \left[ \left( {}^{n}{{C}_{0}} \right)\left( {}^{n}{{C}_{1}} \right)+\left( {}^{n}{{C}_{1}} \right)\left( {}^{n}{{C}_{2}} \right)+.....+\left( {}^{n}{{C}_{n-1}} \right)\left( {}^{n}{{C}_{n}} \right) \right]{{x}^{n-1}}={}^{2n}{{C}_{n-1}}{{x}^{n-1}} \\
& \Rightarrow \left( {}^{n}{{C}_{0}} \right)\left( {}^{n}{{C}_{1}} \right)+\left( {}^{n}{{C}_{1}} \right)\left( {}^{n}{{C}_{2}} \right)+.....+\left( {}^{n}{{C}_{n-1}} \right)\left( {}^{n}{{C}_{n}} \right)={}^{2n}{{C}_{n-1}} \\
\end{align}\]
So, the coefficients are same and the value of $\left( {}^{n}{{C}_{0}} \right)\left( {}^{n}{{C}_{1}} \right)+\left( {}^{n}{{C}_{1}} \right)\left( {}^{n}{{C}_{2}} \right)+.....+\left( {}^{n}{{C}_{n-1}} \right)\left( {}^{n}{{C}_{n}} \right)$ is ${}^{2n}{{C}_{n-1}}{{x}^{n-1}}$.
Note: We need to remember solving the general term of the series $\left( {}^{n}{{C}_{0}} \right)\left( {}^{n}{{C}_{1}} \right)+\left( {}^{n}{{C}_{1}} \right)\left( {}^{n}{{C}_{2}} \right)+.....+\left( {}^{n}{{C}_{n-1}} \right)\left( {}^{n}{{C}_{n}} \right)$ and then find the summation will never solve it. The coefficients are broken into particular patterns and that can only be solved by multiplication of the expansions. There won't be any other coefficients of ${{x}^{n-1}}$ other than those we have already taken into account.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

