
Find the value of \[\int\limits_{0}^{1}{\log \left( \dfrac{1-x}{x} \right)}\]?
Answer
523.2k+ views
Hint: We first use the definite integral formula of \[\int\limits_{a}^{b}{f\left( z \right)}=\int\limits_{a}^{b}{f\left( a+b-z \right)}\]. We take the replacements of \[a=0,b=1,z=x\]. We use the logarithm formula of \[\log \left( \dfrac{a}{b} \right)=-\log \left( \dfrac{b}{a} \right)\]. We add the integrals to find the solution of the integral.
Complete step by step answer:
We are going to use the concept of definite integral where we can use the formula of equality
\[\int\limits_{a}^{b}{f\left( z \right)}=\int\limits_{a}^{b}{f\left( a+b-z \right)}\].
For our given integral the upper and lower limits are 1 and 0 respectively.
For the formula of \[\int\limits_{a}^{b}{f\left( z \right)}=\int\limits_{a}^{b}{f\left( a+b-z \right)}\], we can use \[a=0,b=1,z=x\].
We can replace the value of $x$ with $1+0-x=1-x$.
Therefore, we get \[\int\limits_{0}^{1}{\log \left( \dfrac{1-x}{x} \right)}=\int\limits_{0}^{1}{\log \left\{ \dfrac{1-\left( 1-x \right)}{\left( 1-x \right)} \right\}}\].
Simplifying the equation, we get \[\int\limits_{0}^{1}{\log \left( \dfrac{1-x}{x} \right)}=\int\limits_{0}^{1}{\log \left\{ \dfrac{1-1+x}{1-x} \right\}}=\int\limits_{0}^{1}{\log \left( \dfrac{x}{1-x} \right)}\].
We now use the logarithmic formula of \[\log \left( \dfrac{a}{b} \right)=-\log \left( \dfrac{b}{a} \right)\].
We can use the formula to get \[\log \left( \dfrac{x}{1-x} \right)=-\log \left( \dfrac{1-x}{x} \right)\].
Let us assume \[I=\int\limits_{0}^{1}{\log \left( \dfrac{1-x}{x} \right)}\] which gives \[I=\int\limits_{0}^{1}{\log \left( \dfrac{1-x}{x} \right)}=\int\limits_{0}^{1}{\log \left( \dfrac{x}{1-x} \right)}\].
We now these integrals to get \[I+I=\int\limits_{0}^{1}{\log \left( \dfrac{1-x}{x} \right)}+\int\limits_{0}^{1}{\log \left( \dfrac{x}{1-x} \right)}=\int\limits_{0}^{1}{\left\{ \log \left( \dfrac{1-x}{x} \right)+\log \left( \dfrac{x}{1-x} \right) \right\}}\].
We already have that \[\log \left( \dfrac{x}{1-x} \right)=-\log \left( \dfrac{1-x}{x} \right)\] which makes the integral as
\[I+I=\int\limits_{0}^{1}{\left\{ \log \left( \dfrac{1-x}{x} \right)-\log \left( \dfrac{1-x}{x} \right) \right\}}=0\].
So, $2I=0\Rightarrow I=0$.
The integral value of \[\int\limits_{0}^{1}{\log \left( \dfrac{1-x}{x} \right)}=0\].
Note: The definite integral is defined to be exactly the limit and summation and that’s the limit changes remain unchanged for the integrations the variable change keeps the area same.
Complete step by step answer:
We are going to use the concept of definite integral where we can use the formula of equality
\[\int\limits_{a}^{b}{f\left( z \right)}=\int\limits_{a}^{b}{f\left( a+b-z \right)}\].
For our given integral the upper and lower limits are 1 and 0 respectively.
For the formula of \[\int\limits_{a}^{b}{f\left( z \right)}=\int\limits_{a}^{b}{f\left( a+b-z \right)}\], we can use \[a=0,b=1,z=x\].
We can replace the value of $x$ with $1+0-x=1-x$.
Therefore, we get \[\int\limits_{0}^{1}{\log \left( \dfrac{1-x}{x} \right)}=\int\limits_{0}^{1}{\log \left\{ \dfrac{1-\left( 1-x \right)}{\left( 1-x \right)} \right\}}\].
Simplifying the equation, we get \[\int\limits_{0}^{1}{\log \left( \dfrac{1-x}{x} \right)}=\int\limits_{0}^{1}{\log \left\{ \dfrac{1-1+x}{1-x} \right\}}=\int\limits_{0}^{1}{\log \left( \dfrac{x}{1-x} \right)}\].
We now use the logarithmic formula of \[\log \left( \dfrac{a}{b} \right)=-\log \left( \dfrac{b}{a} \right)\].
We can use the formula to get \[\log \left( \dfrac{x}{1-x} \right)=-\log \left( \dfrac{1-x}{x} \right)\].
Let us assume \[I=\int\limits_{0}^{1}{\log \left( \dfrac{1-x}{x} \right)}\] which gives \[I=\int\limits_{0}^{1}{\log \left( \dfrac{1-x}{x} \right)}=\int\limits_{0}^{1}{\log \left( \dfrac{x}{1-x} \right)}\].
We now these integrals to get \[I+I=\int\limits_{0}^{1}{\log \left( \dfrac{1-x}{x} \right)}+\int\limits_{0}^{1}{\log \left( \dfrac{x}{1-x} \right)}=\int\limits_{0}^{1}{\left\{ \log \left( \dfrac{1-x}{x} \right)+\log \left( \dfrac{x}{1-x} \right) \right\}}\].
We already have that \[\log \left( \dfrac{x}{1-x} \right)=-\log \left( \dfrac{1-x}{x} \right)\] which makes the integral as
\[I+I=\int\limits_{0}^{1}{\left\{ \log \left( \dfrac{1-x}{x} \right)-\log \left( \dfrac{1-x}{x} \right) \right\}}=0\].
So, $2I=0\Rightarrow I=0$.
The integral value of \[\int\limits_{0}^{1}{\log \left( \dfrac{1-x}{x} \right)}=0\].
Note: The definite integral is defined to be exactly the limit and summation and that’s the limit changes remain unchanged for the integrations the variable change keeps the area same.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

