
Find the value of \[\int\limits_{0}^{1}{\log \left( \dfrac{1-x}{x} \right)}\]?
Answer
462k+ views
Hint: We first use the definite integral formula of \[\int\limits_{a}^{b}{f\left( z \right)}=\int\limits_{a}^{b}{f\left( a+b-z \right)}\]. We take the replacements of \[a=0,b=1,z=x\]. We use the logarithm formula of \[\log \left( \dfrac{a}{b} \right)=-\log \left( \dfrac{b}{a} \right)\]. We add the integrals to find the solution of the integral.
Complete step by step answer:
We are going to use the concept of definite integral where we can use the formula of equality
\[\int\limits_{a}^{b}{f\left( z \right)}=\int\limits_{a}^{b}{f\left( a+b-z \right)}\].
For our given integral the upper and lower limits are 1 and 0 respectively.
For the formula of \[\int\limits_{a}^{b}{f\left( z \right)}=\int\limits_{a}^{b}{f\left( a+b-z \right)}\], we can use \[a=0,b=1,z=x\].
We can replace the value of $x$ with $1+0-x=1-x$.
Therefore, we get \[\int\limits_{0}^{1}{\log \left( \dfrac{1-x}{x} \right)}=\int\limits_{0}^{1}{\log \left\{ \dfrac{1-\left( 1-x \right)}{\left( 1-x \right)} \right\}}\].
Simplifying the equation, we get \[\int\limits_{0}^{1}{\log \left( \dfrac{1-x}{x} \right)}=\int\limits_{0}^{1}{\log \left\{ \dfrac{1-1+x}{1-x} \right\}}=\int\limits_{0}^{1}{\log \left( \dfrac{x}{1-x} \right)}\].
We now use the logarithmic formula of \[\log \left( \dfrac{a}{b} \right)=-\log \left( \dfrac{b}{a} \right)\].
We can use the formula to get \[\log \left( \dfrac{x}{1-x} \right)=-\log \left( \dfrac{1-x}{x} \right)\].
Let us assume \[I=\int\limits_{0}^{1}{\log \left( \dfrac{1-x}{x} \right)}\] which gives \[I=\int\limits_{0}^{1}{\log \left( \dfrac{1-x}{x} \right)}=\int\limits_{0}^{1}{\log \left( \dfrac{x}{1-x} \right)}\].
We now these integrals to get \[I+I=\int\limits_{0}^{1}{\log \left( \dfrac{1-x}{x} \right)}+\int\limits_{0}^{1}{\log \left( \dfrac{x}{1-x} \right)}=\int\limits_{0}^{1}{\left\{ \log \left( \dfrac{1-x}{x} \right)+\log \left( \dfrac{x}{1-x} \right) \right\}}\].
We already have that \[\log \left( \dfrac{x}{1-x} \right)=-\log \left( \dfrac{1-x}{x} \right)\] which makes the integral as
\[I+I=\int\limits_{0}^{1}{\left\{ \log \left( \dfrac{1-x}{x} \right)-\log \left( \dfrac{1-x}{x} \right) \right\}}=0\].
So, $2I=0\Rightarrow I=0$.
The integral value of \[\int\limits_{0}^{1}{\log \left( \dfrac{1-x}{x} \right)}=0\].
Note: The definite integral is defined to be exactly the limit and summation and that’s the limit changes remain unchanged for the integrations the variable change keeps the area same.
Complete step by step answer:
We are going to use the concept of definite integral where we can use the formula of equality
\[\int\limits_{a}^{b}{f\left( z \right)}=\int\limits_{a}^{b}{f\left( a+b-z \right)}\].
For our given integral the upper and lower limits are 1 and 0 respectively.
For the formula of \[\int\limits_{a}^{b}{f\left( z \right)}=\int\limits_{a}^{b}{f\left( a+b-z \right)}\], we can use \[a=0,b=1,z=x\].
We can replace the value of $x$ with $1+0-x=1-x$.
Therefore, we get \[\int\limits_{0}^{1}{\log \left( \dfrac{1-x}{x} \right)}=\int\limits_{0}^{1}{\log \left\{ \dfrac{1-\left( 1-x \right)}{\left( 1-x \right)} \right\}}\].
Simplifying the equation, we get \[\int\limits_{0}^{1}{\log \left( \dfrac{1-x}{x} \right)}=\int\limits_{0}^{1}{\log \left\{ \dfrac{1-1+x}{1-x} \right\}}=\int\limits_{0}^{1}{\log \left( \dfrac{x}{1-x} \right)}\].
We now use the logarithmic formula of \[\log \left( \dfrac{a}{b} \right)=-\log \left( \dfrac{b}{a} \right)\].
We can use the formula to get \[\log \left( \dfrac{x}{1-x} \right)=-\log \left( \dfrac{1-x}{x} \right)\].
Let us assume \[I=\int\limits_{0}^{1}{\log \left( \dfrac{1-x}{x} \right)}\] which gives \[I=\int\limits_{0}^{1}{\log \left( \dfrac{1-x}{x} \right)}=\int\limits_{0}^{1}{\log \left( \dfrac{x}{1-x} \right)}\].
We now these integrals to get \[I+I=\int\limits_{0}^{1}{\log \left( \dfrac{1-x}{x} \right)}+\int\limits_{0}^{1}{\log \left( \dfrac{x}{1-x} \right)}=\int\limits_{0}^{1}{\left\{ \log \left( \dfrac{1-x}{x} \right)+\log \left( \dfrac{x}{1-x} \right) \right\}}\].
We already have that \[\log \left( \dfrac{x}{1-x} \right)=-\log \left( \dfrac{1-x}{x} \right)\] which makes the integral as
\[I+I=\int\limits_{0}^{1}{\left\{ \log \left( \dfrac{1-x}{x} \right)-\log \left( \dfrac{1-x}{x} \right) \right\}}=0\].
So, $2I=0\Rightarrow I=0$.
The integral value of \[\int\limits_{0}^{1}{\log \left( \dfrac{1-x}{x} \right)}=0\].
Note: The definite integral is defined to be exactly the limit and summation and that’s the limit changes remain unchanged for the integrations the variable change keeps the area same.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
