
Find the value of \[\int {\left[ {\dfrac{{\left( {x + sin{\text{ }}x} \right)}}{{\left( {1 + cos{\text{ }}x} \right)}}} \right] } {\text{ }}dx\]
Answer
502.2k+ views
Hint: We have to integrate \[{\text{ }}\dfrac{{\left( {x + sin{\text{ }}x} \right)}}{{\left( {1 + cos{\text{ }}x} \right)}}\] with respect to \[x\] . We solve this using integration of by parts and using various formulas of trigonometric functions . We firstly apply the double angle formula in cos function then we solve the integration by splitting it into parts and after applying by-parts we get the solution of the integral.
Complete step-by-step answer:
Given : \[\int {\left[ {\dfrac{{\left( {x + sin{\text{ }}x} \right)}}{{\left( {1 + cos{\text{ }}x} \right)}}} \right] } {\text{ }}dx\]
Let \[I = \int {\left[ {\dfrac{{\left( {x + sin{\text{ }}x} \right)}}{{\left( {1 + cos{\text{ }}x} \right)}}} \right] } {\text{ }}dx\]
We have to integrate \[I\] with respect to \[x\]
As we know , $cos2x = 2co{s^2}x - 1$
Using this formula , we get
\[I = \int {\left[ {\dfrac{{\left( {x + sin{\text{ }}x} \right)}}{{\left( {1 + 2co{s^2}\left( {\dfrac{x}{2}} \right) - 1} \right)}}} \right] } {\text{ }}dx\]
On simplifying , we get
\[I = \int {\left[ {\dfrac{{\left( {x + sin{\text{ }}x} \right)}}{{2co{s^2}\left( {\dfrac{x}{2}} \right)}}} \right] } {\text{ }}dx\]
Now dividing numerator by \[2co{s^2}\left( {\dfrac{x}{2}} \right)\] and writing the terms separately , we get
\[\left( {\cos x = \dfrac{1}{{\sec x}}} \right)\]
\[I = \int {\left[ {\dfrac{x}{2}{{\sec }^2}\dfrac{x}{2} + \dfrac{1}{2}\sin x \times {{\sec }^2}\dfrac{x}{2}} \right] dx} \]
Also , \[\sin 2x = 2\sin x\cos x\]
Using value sin double angle , we get
\[I = \int {\left[ {\dfrac{x}{2}{{\sec }^2}\dfrac{x}{2} + \dfrac{1}{2} \times 2\sin \dfrac{x}{2}\cos \dfrac{x}{2} \times {{\sec }^2}\dfrac{x}{2}} \right] dx} \]
\[\left( {\cos x = \dfrac{1}{{\sec x}}} \right)\]
\[\left( {\tan x = \dfrac{{\sin x}}{{\cos x}}} \right)\]
After simplifying the terms , we get
\[I = \int {\left[ {\dfrac{x}{2}{{\sec }^2}\dfrac{x}{2} + \tan \dfrac{x}{2}} \right] dx} \]
Now , using formula of by - parts :
\[\int {\left[ {uv} \right] dx} = u\int v {\text{ dx}} - \int {\left[ {\left( {\dfrac{d}{{dx}}u} \right) \times \int v dx} \right] dx} \]
We get,
\[I = \dfrac{x}{2}\int {{{\sec }^2}\dfrac{x}{2}dx} - \dfrac{1}{2}\int {\left[ {\left( {\dfrac{d}{{dx}}x} \right) \times \int {{{\sec }^2}\dfrac{x}{2}} dx} \right] dx} + \int {\tan \dfrac{x}{2}dx} \]
Using integral formula \[\int {{{\sec }^2}x} dx = \tan x + c\] and [ derivative of${x^n} = n{x^{n - 1}}$] , we get
\[I = \dfrac{x}{2}\tan \dfrac{x}{2} \times 2 + a - \dfrac{1}{2}\int {\left[ {1 \times \tan \dfrac{x}{2} \times 2} \right] dx} + \int {\tan \dfrac{x}{2}dx} \]
\[I = \dfrac{x}{2}\tan \dfrac{x}{2} \times 2 + a - \int {\left[ {\tan \dfrac{x}{2}} \right] dx} + \int {\tan \dfrac{x}{2}dx} \]
After cancelling terms , we get
\[I = x\tan \dfrac{x}{2} + a\]
Where \[a\] is integration constant
So, the correct answer is “ \[I = x\tan \dfrac{x}{2} + a\] ”.
Note: As the question was of indefinite integral that’s why we added integration constant. If the question would be of definite integral then we don’t add integral constant to the final answer .
We use the formula of By-Parts to integrate two functions of a single variable $x$by taking one functions as $u$ and second function as $v$ and then applying the formula :
\[\int {\left[ {uv} \right] dx} = u\int v {\text{ dx}} - \int {\left[ {\left( {\dfrac{d}{{dx}}u} \right) \times \int v dx} \right] dx} \]
Complete step-by-step answer:
Given : \[\int {\left[ {\dfrac{{\left( {x + sin{\text{ }}x} \right)}}{{\left( {1 + cos{\text{ }}x} \right)}}} \right] } {\text{ }}dx\]
Let \[I = \int {\left[ {\dfrac{{\left( {x + sin{\text{ }}x} \right)}}{{\left( {1 + cos{\text{ }}x} \right)}}} \right] } {\text{ }}dx\]
We have to integrate \[I\] with respect to \[x\]
As we know , $cos2x = 2co{s^2}x - 1$
Using this formula , we get
\[I = \int {\left[ {\dfrac{{\left( {x + sin{\text{ }}x} \right)}}{{\left( {1 + 2co{s^2}\left( {\dfrac{x}{2}} \right) - 1} \right)}}} \right] } {\text{ }}dx\]
On simplifying , we get
\[I = \int {\left[ {\dfrac{{\left( {x + sin{\text{ }}x} \right)}}{{2co{s^2}\left( {\dfrac{x}{2}} \right)}}} \right] } {\text{ }}dx\]
Now dividing numerator by \[2co{s^2}\left( {\dfrac{x}{2}} \right)\] and writing the terms separately , we get
\[\left( {\cos x = \dfrac{1}{{\sec x}}} \right)\]
\[I = \int {\left[ {\dfrac{x}{2}{{\sec }^2}\dfrac{x}{2} + \dfrac{1}{2}\sin x \times {{\sec }^2}\dfrac{x}{2}} \right] dx} \]
Also , \[\sin 2x = 2\sin x\cos x\]
Using value sin double angle , we get
\[I = \int {\left[ {\dfrac{x}{2}{{\sec }^2}\dfrac{x}{2} + \dfrac{1}{2} \times 2\sin \dfrac{x}{2}\cos \dfrac{x}{2} \times {{\sec }^2}\dfrac{x}{2}} \right] dx} \]
\[\left( {\cos x = \dfrac{1}{{\sec x}}} \right)\]
\[\left( {\tan x = \dfrac{{\sin x}}{{\cos x}}} \right)\]
After simplifying the terms , we get
\[I = \int {\left[ {\dfrac{x}{2}{{\sec }^2}\dfrac{x}{2} + \tan \dfrac{x}{2}} \right] dx} \]
Now , using formula of by - parts :
\[\int {\left[ {uv} \right] dx} = u\int v {\text{ dx}} - \int {\left[ {\left( {\dfrac{d}{{dx}}u} \right) \times \int v dx} \right] dx} \]
We get,
\[I = \dfrac{x}{2}\int {{{\sec }^2}\dfrac{x}{2}dx} - \dfrac{1}{2}\int {\left[ {\left( {\dfrac{d}{{dx}}x} \right) \times \int {{{\sec }^2}\dfrac{x}{2}} dx} \right] dx} + \int {\tan \dfrac{x}{2}dx} \]
Using integral formula \[\int {{{\sec }^2}x} dx = \tan x + c\] and [ derivative of${x^n} = n{x^{n - 1}}$] , we get
\[I = \dfrac{x}{2}\tan \dfrac{x}{2} \times 2 + a - \dfrac{1}{2}\int {\left[ {1 \times \tan \dfrac{x}{2} \times 2} \right] dx} + \int {\tan \dfrac{x}{2}dx} \]
\[I = \dfrac{x}{2}\tan \dfrac{x}{2} \times 2 + a - \int {\left[ {\tan \dfrac{x}{2}} \right] dx} + \int {\tan \dfrac{x}{2}dx} \]
After cancelling terms , we get
\[I = x\tan \dfrac{x}{2} + a\]
Where \[a\] is integration constant
So, the correct answer is “ \[I = x\tan \dfrac{x}{2} + a\] ”.
Note: As the question was of indefinite integral that’s why we added integration constant. If the question would be of definite integral then we don’t add integral constant to the final answer .
We use the formula of By-Parts to integrate two functions of a single variable $x$by taking one functions as $u$ and second function as $v$ and then applying the formula :
\[\int {\left[ {uv} \right] dx} = u\int v {\text{ dx}} - \int {\left[ {\left( {\dfrac{d}{{dx}}u} \right) \times \int v dx} \right] dx} \]
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

The correct structure of ethylenediaminetetraacetic class 12 chemistry CBSE

Calculate the equivalent resistance between a and b class 12 physics CBSE

How many states of matter are there in total class 12 chemistry CBSE

Which of the following is the best conductor of electricity class 12 physics CBSE

