
Find the value of \[\int {\dfrac{{\sec x}}{{\sqrt {\sin \left( {2x + \alpha } \right) + \sin \alpha } }}} dx \\ \]
A . \[\sqrt {2\sec \alpha \left( {\tan x + \tan \alpha } \right)} + c\\ \]
B. \[\sqrt {2\sec \alpha \left( {\tan x - \tan \alpha } \right)} + c\\ \]
C. \[\sqrt {2\sec \alpha \left( {\tan \alpha - \tan x} \right)} + c\\ \]
D. \[\sqrt {2\sec \alpha \left( {\sec x - \sec \alpha } \right)} + c\\ \]
Answer
570k+ views
Hint:
The given function is indefinite since there is no limit given. The indefinite integral of a function f is a differentiable function F whose derivative is equal to the original function f. The first fundamental theorem of calculus allows definite integrals to be computed in terms of indefinite integrals.
Complete step by step solution:
Let the given integral be $I$ such that:
\[I = \int {\dfrac{{\sec x}}{{\sqrt {\sin \left( {2x + \alpha } \right) + \sin \alpha } }}} dx - - (i)\]
We know the trigonometric addition and subtraction identities of\[\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B\], hence by using this identity we can write equation (i) as
\[
I = \int {\dfrac{{\sec x}}{{\sqrt {\sin 2x\cos \alpha + \cos 2x\sin \alpha + \sin \alpha } }}} dx \\
= \int {\dfrac{{\sec x}}{{\sqrt {\sin 2x\cos \alpha + \sin \alpha \left( {\cos 2x + 1} \right)} }}} dx \\
\]
Since, \[1 + \cos 2\theta = 2{\cos ^2}\theta \] and also \[\sin 2\theta = 2\sin \theta \cos \theta \] hence by using these identities the equation can be further written as:
\[I = \int {\dfrac{{\sec x}}{{\sqrt {2\sin x\cos x\cos \alpha + \sin \alpha \left( {2{{\cos }^2}x} \right)} }}} dx\]
Substitute $\sin x = \tan x\cos x$ in the above equation, we get
\[
I = \int {\dfrac{{\sec x}}{{\sqrt {2\left( {\tan x\cos x} \right)\cos x\cos \alpha + \sin \alpha \left( {2{{\cos }^2}x} \right)} }}} dx \\
I = \int {\dfrac{{\sec x}}{{\sqrt {2\tan x{{\cos }^2}x\cos \alpha + \sin \alpha \left( {2{{\cos }^2}x} \right)} }}} dx \\
\]
Now take \[2{\cos ^2}x\] as common in the denominator, so we get
\[I = \dfrac{1}{{\sqrt 2 }}\int {\dfrac{{\sec x}}{{\cos x\sqrt {\tan x\cos \alpha + \sin \alpha } }}} dx{\text{ }}\left[ {\because \tan x = \dfrac{{\sin x}}{{\cos x}}} \right]\]
This can be further written as
\[I = \dfrac{1}{{\sqrt 2 }}\int {\dfrac{{{{\sec }^2}x}}{{\sqrt {\tan x\cos \alpha + \sin \alpha } }}} dx - - (ii){\text{ }}\left[ {\because \sec x = \dfrac{1}{{\cos x}}} \right]\]
Now let \[\tan x\cos \alpha + \sin \alpha = {t^2} - - (iii)\]
Now differentiate equation (iii) with respect to ‘t’, so we will get
\[
{\sec ^2}x\cos \alpha dx + 0 = 2tdt \\
{\sec ^2}x = \dfrac{{2t}}{{\cos \alpha }}dt - - (iv) \\
\]
Now substitute the value of (iii) and (iv) in equation (ii), we get
\[
I = \dfrac{1}{{\sqrt 2 }}\int {\dfrac{{\left( {\dfrac{{2t}}{{\cos \alpha }}} \right)}}{{\sqrt {{t^2}} }}} dt \\
= \dfrac{1}{{\sqrt 2 }}\int {\dfrac{2}{{\cos \alpha }}} dt \\
= \dfrac{2}{{\sqrt 2 \cos \alpha }}\int {dt} \\
\]
Now by integration, we get
\[I = \dfrac{2}{{\sqrt 2 \cos \alpha }}t + c\]
Now substitute the value of t in obtained equation from equation (iii), so we get
\[
I = \dfrac{{\sqrt 2 }}{{\cos \alpha }}\sqrt {\tan x\cos \alpha + \sin \alpha } + c \\
= \sqrt {2{{\sec }^2}\alpha \left( {\tan x\cos \alpha + \sin \alpha } \right)} + c \\
= \sqrt {2\sec \alpha \left( {\tan x\cos \alpha \sec \alpha + \sin \alpha \sec \alpha } \right)} + c \\
= \sqrt {2\sec \alpha \left( {\tan x + \tan \alpha } \right)} + c \\
\]
Therefore we can say
\[\int {\dfrac{{\sec x}}{{\sqrt {\sin \left( {2x + \alpha } \right) + \sin \alpha } }}} dx = \sqrt {2\sec \alpha \left( {\tan x + \tan \alpha } \right)} + c\]
Option A is correct.
Important equations used:
\[\cos 2\theta = 2{\cos ^2}\theta - 1\]
\[\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B\]
\[\int {dx = x + c} \]
\[\tan x = \dfrac{{\sin x}}{{\cos x}}\]
\[\sec x = \dfrac{1}{{\cos x}}\]
Note:
While substituting the real parameter of the question with the auxiliary parameter, one should be sure that it will not make the problem more complex. However, selecting an auxiliary parameter completely depends on the individual point of view.
The given function is indefinite since there is no limit given. The indefinite integral of a function f is a differentiable function F whose derivative is equal to the original function f. The first fundamental theorem of calculus allows definite integrals to be computed in terms of indefinite integrals.
Complete step by step solution:
Let the given integral be $I$ such that:
\[I = \int {\dfrac{{\sec x}}{{\sqrt {\sin \left( {2x + \alpha } \right) + \sin \alpha } }}} dx - - (i)\]
We know the trigonometric addition and subtraction identities of\[\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B\], hence by using this identity we can write equation (i) as
\[
I = \int {\dfrac{{\sec x}}{{\sqrt {\sin 2x\cos \alpha + \cos 2x\sin \alpha + \sin \alpha } }}} dx \\
= \int {\dfrac{{\sec x}}{{\sqrt {\sin 2x\cos \alpha + \sin \alpha \left( {\cos 2x + 1} \right)} }}} dx \\
\]
Since, \[1 + \cos 2\theta = 2{\cos ^2}\theta \] and also \[\sin 2\theta = 2\sin \theta \cos \theta \] hence by using these identities the equation can be further written as:
\[I = \int {\dfrac{{\sec x}}{{\sqrt {2\sin x\cos x\cos \alpha + \sin \alpha \left( {2{{\cos }^2}x} \right)} }}} dx\]
Substitute $\sin x = \tan x\cos x$ in the above equation, we get
\[
I = \int {\dfrac{{\sec x}}{{\sqrt {2\left( {\tan x\cos x} \right)\cos x\cos \alpha + \sin \alpha \left( {2{{\cos }^2}x} \right)} }}} dx \\
I = \int {\dfrac{{\sec x}}{{\sqrt {2\tan x{{\cos }^2}x\cos \alpha + \sin \alpha \left( {2{{\cos }^2}x} \right)} }}} dx \\
\]
Now take \[2{\cos ^2}x\] as common in the denominator, so we get
\[I = \dfrac{1}{{\sqrt 2 }}\int {\dfrac{{\sec x}}{{\cos x\sqrt {\tan x\cos \alpha + \sin \alpha } }}} dx{\text{ }}\left[ {\because \tan x = \dfrac{{\sin x}}{{\cos x}}} \right]\]
This can be further written as
\[I = \dfrac{1}{{\sqrt 2 }}\int {\dfrac{{{{\sec }^2}x}}{{\sqrt {\tan x\cos \alpha + \sin \alpha } }}} dx - - (ii){\text{ }}\left[ {\because \sec x = \dfrac{1}{{\cos x}}} \right]\]
Now let \[\tan x\cos \alpha + \sin \alpha = {t^2} - - (iii)\]
Now differentiate equation (iii) with respect to ‘t’, so we will get
\[
{\sec ^2}x\cos \alpha dx + 0 = 2tdt \\
{\sec ^2}x = \dfrac{{2t}}{{\cos \alpha }}dt - - (iv) \\
\]
Now substitute the value of (iii) and (iv) in equation (ii), we get
\[
I = \dfrac{1}{{\sqrt 2 }}\int {\dfrac{{\left( {\dfrac{{2t}}{{\cos \alpha }}} \right)}}{{\sqrt {{t^2}} }}} dt \\
= \dfrac{1}{{\sqrt 2 }}\int {\dfrac{2}{{\cos \alpha }}} dt \\
= \dfrac{2}{{\sqrt 2 \cos \alpha }}\int {dt} \\
\]
Now by integration, we get
\[I = \dfrac{2}{{\sqrt 2 \cos \alpha }}t + c\]
Now substitute the value of t in obtained equation from equation (iii), so we get
\[
I = \dfrac{{\sqrt 2 }}{{\cos \alpha }}\sqrt {\tan x\cos \alpha + \sin \alpha } + c \\
= \sqrt {2{{\sec }^2}\alpha \left( {\tan x\cos \alpha + \sin \alpha } \right)} + c \\
= \sqrt {2\sec \alpha \left( {\tan x\cos \alpha \sec \alpha + \sin \alpha \sec \alpha } \right)} + c \\
= \sqrt {2\sec \alpha \left( {\tan x + \tan \alpha } \right)} + c \\
\]
Therefore we can say
\[\int {\dfrac{{\sec x}}{{\sqrt {\sin \left( {2x + \alpha } \right) + \sin \alpha } }}} dx = \sqrt {2\sec \alpha \left( {\tan x + \tan \alpha } \right)} + c\]
Option A is correct.
Important equations used:
\[\cos 2\theta = 2{\cos ^2}\theta - 1\]
\[\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B\]
\[\int {dx = x + c} \]
\[\tan x = \dfrac{{\sin x}}{{\cos x}}\]
\[\sec x = \dfrac{1}{{\cos x}}\]
Note:
While substituting the real parameter of the question with the auxiliary parameter, one should be sure that it will not make the problem more complex. However, selecting an auxiliary parameter completely depends on the individual point of view.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

