
Find the value of \[\int_{ - 1}^2 {\left| {2x - 1} \right|} dx\].
Answer
615.9k+ views
Hint: Express the function \[\left| {2x - 1} \right|\] as \[2x - 1\] and \[ - (2x - 1)\] and find the interval and use this to evaluate the integral using the limits.
Complete step-by-step answer:
A modulus function is a function that gives the absolute value of a number or variable.
A definite integral can be divided into a sum of two definite integrals by taking appropriate limits. This property is represented as follows:
\[\int\limits_a^b {f(x)dx} = \int\limits_a^c {f(x)dx} + \int\limits_c^b {f(x)dx} \]
It is defined as follows:
\[f(x) = \left| x \right| = \left\{ \begin{gathered}
x{\text{ }},x \geqslant 0 \\
- x,x < 0 \\
\end{gathered} \right..........(1)\]
We have the function \[\left| {2x - 1} \right|\], we need to define this as in equation (1).
We now find the interval where 2x – 1 is less than 0, we have:
\[2x - 1 < 0\]
\[2x < 1\]
\[x < \dfrac{1}{2}\]
Hence, the function \[\left| {2x - 1} \right|\], can be represented as follows:
\[\left| {2x - 1} \right| = \left\{ \begin{gathered}
2x - 1{\text{ }},x \geqslant \dfrac{1}{2} \\
- (2x - 1),x < \dfrac{1}{2} \\
\end{gathered} \right............(2)\]
Using definition (2) in the integral and splitting the limits, we have:
\[\int_{ - 1}^2 {\left| {2x - 1} \right|} dx = - \int_{ - 1}^{\dfrac{1}{2}} {(2x - 1} )dx + \int_{\dfrac{1}{2}}^2 {(2x - 1} )dx\]
Integral of 1 is x and the integral of x is \[\dfrac{{{x^2}}}{2}\], then, we have:
\[\int_{ - 1}^2 {\left| {2x - 1} \right|} dx = - \left\lceil {{x^2} - x} \right\rceil _{ - 1}^{\dfrac{1}{2}} + \left\lceil {{x^2} - x} \right\rceil _{\dfrac{1}{2}}^2\]
Evaluating the limits, we have:
\[\int_{ - 1}^2 {\left| {2x - 1} \right|} dx = - \left[ {{{\left( {\dfrac{1}{2}} \right)}^2} - \dfrac{1}{2} - \left( {{{( - 1)}^2} - ( - 1)} \right)} \right] + \left[ {{2^2} - 2 - \left( {{{\left( {\dfrac{1}{2}} \right)}^2} - \dfrac{1}{2}} \right)} \right]\]
Simplifying, we have:
\[\int_{ - 1}^2 {\left| {2x - 1} \right|} dx = - \left[ {\dfrac{1}{4} - \dfrac{1}{2} - 2} \right] + \left[ {2 - \left( {\dfrac{1}{4} - \dfrac{1}{2}} \right)} \right]\]
Simplifying further, we have:
\[\int_{ - 1}^2 {\left| {2x - 1} \right|} dx = - \left[ { - \dfrac{1}{4} - 2} \right] + \left[ {2 + \dfrac{1}{4}} \right]\]
Taking the negative sign inside the brackets, we have:
\[\int_{ - 1}^2 {\left| {2x - 1} \right|} dx = \dfrac{1}{4} + 2 + 2 + \dfrac{1}{4}\]
Simplifying, we have:
\[\int_{ - 1}^2 {\left| {2x - 1} \right|} dx = 4 + \dfrac{1}{2}\]
Taking common denominator, we have:
\[\int_{ - 1}^2 {\left| {2x - 1} \right|} dx = \dfrac{{8 + 1}}{2}\]
\[\int_{ - 1}^2 {\left| {2x - 1} \right|} dx = \dfrac{9}{2}\]
Hence, the value of the given integral is \[\dfrac{9}{2}\].
Note: You can also draw the function \[\left| {2x - 1} \right|\] graphically and find the area enclosed by the curve and the x-axis to find the value of the integral.
Complete step-by-step answer:
A modulus function is a function that gives the absolute value of a number or variable.
A definite integral can be divided into a sum of two definite integrals by taking appropriate limits. This property is represented as follows:
\[\int\limits_a^b {f(x)dx} = \int\limits_a^c {f(x)dx} + \int\limits_c^b {f(x)dx} \]
It is defined as follows:
\[f(x) = \left| x \right| = \left\{ \begin{gathered}
x{\text{ }},x \geqslant 0 \\
- x,x < 0 \\
\end{gathered} \right..........(1)\]
We have the function \[\left| {2x - 1} \right|\], we need to define this as in equation (1).
We now find the interval where 2x – 1 is less than 0, we have:
\[2x - 1 < 0\]
\[2x < 1\]
\[x < \dfrac{1}{2}\]
Hence, the function \[\left| {2x - 1} \right|\], can be represented as follows:
\[\left| {2x - 1} \right| = \left\{ \begin{gathered}
2x - 1{\text{ }},x \geqslant \dfrac{1}{2} \\
- (2x - 1),x < \dfrac{1}{2} \\
\end{gathered} \right............(2)\]
Using definition (2) in the integral and splitting the limits, we have:
\[\int_{ - 1}^2 {\left| {2x - 1} \right|} dx = - \int_{ - 1}^{\dfrac{1}{2}} {(2x - 1} )dx + \int_{\dfrac{1}{2}}^2 {(2x - 1} )dx\]
Integral of 1 is x and the integral of x is \[\dfrac{{{x^2}}}{2}\], then, we have:
\[\int_{ - 1}^2 {\left| {2x - 1} \right|} dx = - \left\lceil {{x^2} - x} \right\rceil _{ - 1}^{\dfrac{1}{2}} + \left\lceil {{x^2} - x} \right\rceil _{\dfrac{1}{2}}^2\]
Evaluating the limits, we have:
\[\int_{ - 1}^2 {\left| {2x - 1} \right|} dx = - \left[ {{{\left( {\dfrac{1}{2}} \right)}^2} - \dfrac{1}{2} - \left( {{{( - 1)}^2} - ( - 1)} \right)} \right] + \left[ {{2^2} - 2 - \left( {{{\left( {\dfrac{1}{2}} \right)}^2} - \dfrac{1}{2}} \right)} \right]\]
Simplifying, we have:
\[\int_{ - 1}^2 {\left| {2x - 1} \right|} dx = - \left[ {\dfrac{1}{4} - \dfrac{1}{2} - 2} \right] + \left[ {2 - \left( {\dfrac{1}{4} - \dfrac{1}{2}} \right)} \right]\]
Simplifying further, we have:
\[\int_{ - 1}^2 {\left| {2x - 1} \right|} dx = - \left[ { - \dfrac{1}{4} - 2} \right] + \left[ {2 + \dfrac{1}{4}} \right]\]
Taking the negative sign inside the brackets, we have:
\[\int_{ - 1}^2 {\left| {2x - 1} \right|} dx = \dfrac{1}{4} + 2 + 2 + \dfrac{1}{4}\]
Simplifying, we have:
\[\int_{ - 1}^2 {\left| {2x - 1} \right|} dx = 4 + \dfrac{1}{2}\]
Taking common denominator, we have:
\[\int_{ - 1}^2 {\left| {2x - 1} \right|} dx = \dfrac{{8 + 1}}{2}\]
\[\int_{ - 1}^2 {\left| {2x - 1} \right|} dx = \dfrac{9}{2}\]
Hence, the value of the given integral is \[\dfrac{9}{2}\].
Note: You can also draw the function \[\left| {2x - 1} \right|\] graphically and find the area enclosed by the curve and the x-axis to find the value of the integral.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

