
Find the value of given inverse trigonometric equation ${{\tan }^{-1}}\left( \dfrac{x}{y} \right)-{{\tan }^{-1}}\left( \dfrac{x-y}{x+y} \right)$.
Answer
594.3k+ views
Hint: Use the formula for difference of two tan inverse functions, given by, ${{\tan }^{-1}}a-{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a-b}{1+ab} \right)$. Simplify the numerator and denominator and cancel the common terms to get a numerical value. Now, find the angle whose, when tangent is taken, equals to the numerical value obtained by the simplification in the first step. Use the formula: ${{\tan }^{-1}}\left( \tan x \right)=x$ where $x \in ({\dfrac{-\pi}{2},\dfrac{\pi}{2}})$.
Complete step-by-step solution -
We have been given: ${{\tan }^{-1}}\left( \dfrac{x}{y} \right)-{{\tan }^{-1}}\left( \dfrac{x-y}{x+y} \right)$.
Now, applying the formula for difference of two tan inverse functions, given by, ${{\tan }^{-1}}a-{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a-b}{1+ab} \right)$, we get,
$\begin{align}
& {{\tan }^{-1}}\left( \dfrac{x}{y} \right)-{{\tan }^{-1}}\left( \dfrac{x-y}{x+y} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{\dfrac{x}{y}-\dfrac{x-y}{x+y}}{1+\dfrac{x}{y}\times \left( \dfrac{x-y}{x+y} \right)} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{\dfrac{x}{y}-\dfrac{x-y}{x+y}}{1+\left( \dfrac{{{x}^{2}}-xy}{xy+{{y}^{2}}} \right)} \right) \\
\end{align}$
Now, taking L.C.M separately in the numerator and denominator, we get the expression
\[\begin{align}
& ={{\tan }^{-1}}\left( \dfrac{\dfrac{x\left( x+y \right)-y\left( x-y \right)}{xy+{{y}^{2}}}}{\dfrac{xy+{{y}^{2}}+x-x{{y}^{2}}}{xy+{{y}^{2}}}} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{\dfrac{{{x}^{2}}+xy-xy+{{y}^{2}}}{xy+{{y}^{2}}}}{\dfrac{xy+{{y}^{2}}+{{x}^{2}}-xy}{xy+{{y}^{2}}}} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{\dfrac{{{x}^{2}}+{{y}^{2}}}{xy+{{y}^{2}}}}{\dfrac{{{y}^{2}}+{{x}^{2}}}{xy+{{y}^{2}}}} \right) \\
\end{align}\]
Cancelling the common terms, we get the expression
$={{\tan }^{-1}}\left( 1 \right)$
Now, we have to find such an angle whose tangent is one and the angle must lie in the range $\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)$.
We know that, $\tan \dfrac{\pi }{4}=1$. So, taking inverse function both sides, we get,
${{\tan }^{-1}}\left( \tan \dfrac{\pi }{4} \right)={{\tan}^{-1}} {\left( 1 \right)}$
Now, using the identity, ${{\tan }^{-1}}\left( \tan x \right)=x$ where $x \in ({\dfrac{-\pi}{2},\dfrac{\pi}{2}})$, we get
$\begin{align}
& \dfrac{\pi }{4}={{\tan }^{-1}}\left( 1 \right) \\
& \Rightarrow {{\tan }^{-1}}\left( 1 \right)=\dfrac{\pi }{4} \\
\end{align}$
Therefore, the value of the expression: ${{\tan }^{-1}}\left( \dfrac{x}{y} \right)-{{\tan }^{-1}}\left( \dfrac{x-y}{x+y} \right)$ is 1.
Note: One may note that there is only one principal value of an inverse trigonometric function. We know that, at many angles the value of tan is 1 but we have to remember the range in which tan inverse function is defined. We have to choose such an angle which lies in the range and satisfies the function. So, there can be only one answer.
Complete step-by-step solution -
We have been given: ${{\tan }^{-1}}\left( \dfrac{x}{y} \right)-{{\tan }^{-1}}\left( \dfrac{x-y}{x+y} \right)$.
Now, applying the formula for difference of two tan inverse functions, given by, ${{\tan }^{-1}}a-{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a-b}{1+ab} \right)$, we get,
$\begin{align}
& {{\tan }^{-1}}\left( \dfrac{x}{y} \right)-{{\tan }^{-1}}\left( \dfrac{x-y}{x+y} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{\dfrac{x}{y}-\dfrac{x-y}{x+y}}{1+\dfrac{x}{y}\times \left( \dfrac{x-y}{x+y} \right)} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{\dfrac{x}{y}-\dfrac{x-y}{x+y}}{1+\left( \dfrac{{{x}^{2}}-xy}{xy+{{y}^{2}}} \right)} \right) \\
\end{align}$
Now, taking L.C.M separately in the numerator and denominator, we get the expression
\[\begin{align}
& ={{\tan }^{-1}}\left( \dfrac{\dfrac{x\left( x+y \right)-y\left( x-y \right)}{xy+{{y}^{2}}}}{\dfrac{xy+{{y}^{2}}+x-x{{y}^{2}}}{xy+{{y}^{2}}}} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{\dfrac{{{x}^{2}}+xy-xy+{{y}^{2}}}{xy+{{y}^{2}}}}{\dfrac{xy+{{y}^{2}}+{{x}^{2}}-xy}{xy+{{y}^{2}}}} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{\dfrac{{{x}^{2}}+{{y}^{2}}}{xy+{{y}^{2}}}}{\dfrac{{{y}^{2}}+{{x}^{2}}}{xy+{{y}^{2}}}} \right) \\
\end{align}\]
Cancelling the common terms, we get the expression
$={{\tan }^{-1}}\left( 1 \right)$
Now, we have to find such an angle whose tangent is one and the angle must lie in the range $\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)$.
We know that, $\tan \dfrac{\pi }{4}=1$. So, taking inverse function both sides, we get,
${{\tan }^{-1}}\left( \tan \dfrac{\pi }{4} \right)={{\tan}^{-1}} {\left( 1 \right)}$
Now, using the identity, ${{\tan }^{-1}}\left( \tan x \right)=x$ where $x \in ({\dfrac{-\pi}{2},\dfrac{\pi}{2}})$, we get
$\begin{align}
& \dfrac{\pi }{4}={{\tan }^{-1}}\left( 1 \right) \\
& \Rightarrow {{\tan }^{-1}}\left( 1 \right)=\dfrac{\pi }{4} \\
\end{align}$
Therefore, the value of the expression: ${{\tan }^{-1}}\left( \dfrac{x}{y} \right)-{{\tan }^{-1}}\left( \dfrac{x-y}{x+y} \right)$ is 1.
Note: One may note that there is only one principal value of an inverse trigonometric function. We know that, at many angles the value of tan is 1 but we have to remember the range in which tan inverse function is defined. We have to choose such an angle which lies in the range and satisfies the function. So, there can be only one answer.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Draw ray diagrams each showing i myopic eye and ii class 12 physics CBSE

Draw a ray diagram of compound microscope when the class 12 physics CBSE

Give simple chemical tests to distinguish between the class 12 chemistry CBSE

Using Huygens wave theory derive Snells law of ref class 12 physics CBSE

Dihybrid cross is made between RRYY yellow round seed class 12 biology CBSE

