
Find the value of \[\dfrac{{{{\tan }^2}2\theta - {{\tan }^2}\theta }}{{1 - {{\tan }^2}2\theta {{\tan }^2}\theta }} = \]
A. $\dfrac{tan 3\theta}{tan \theta}$
B. $\dfrac{cot 3\theta}{cot \theta}$
C. \[\tan 3\theta \tan \theta \]
D. \[\cot 3\theta \cot \theta \]
Answer
574.2k+ views
Hint: We use the formula of \[{a^2} - {b^2} = (a - b)(a + b)\] to write both numerator and denominator in simple form. Shuffle and pair the elements of numerator and denominator to form pairs that combine and give trigonometric identities of \[\tan (A + B)\] and \[\tan (A - B)\]. Add and subtract the angles within to get the answer.
* Formula of \[\tan (A + B)\]is given as \[\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\]
* Formula of \[\tan (A - B)\]is given as \[\tan (A - B) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\]
Complete step by step solution:
We have to find the value of \[\dfrac{{{{\tan }^2}2\theta - {{\tan }^2}\theta }}{{1 - {{\tan }^2}2\theta {{\tan }^2}\theta }}\]............… (1)
Since we know \[{a^2} - {b^2} = (a - b)(a + b)\]
We have a numerator as \[{\tan ^2}2\theta - {\tan ^2}\theta \].
On comparing with the formula \[{a^2} - {b^2} = (a - b)(a + b)\], \[a = \tan 2\theta ,b = \tan \theta \]
\[ \Rightarrow {\tan ^2}2\theta - {\tan ^2}\theta = (\tan 2\theta - \tan \theta )(\tan 2\theta + \tan \theta )\]............… (2)
We have a denominator as \[1 - {\tan ^2}2\theta {\tan ^2}\theta \].
On comparing with the formula \[{a^2} - {b^2} = (a - b)(a + b)\], \[a = 1,b = \tan 2\theta \tan \theta \]
\[ \Rightarrow 1 - {\tan ^2}2\theta {\tan ^2}\theta = (1 - \tan 2\theta \tan \theta )(1 + \tan 2\theta \tan \theta )\]...............… (3)
Substitute the values of numerator from equation (2)and value of denominator from equation (3) in equation (1)
\[ \Rightarrow \dfrac{{{{\tan }^2}2\theta - {{\tan }^2}\theta }}{{1 - {{\tan }^2}2\theta {{\tan }^2}\theta }} = \dfrac{{(\tan 2\theta - \tan \theta )(\tan 2\theta + \tan \theta )}}{{(1 - \tan 2\theta \tan \theta )(1 + \tan 2\theta \tan \theta )}}\]................… (4)
Now we know the trigonometric identities \[\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\]and\[\tan (A - B) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\].
We pair the terms in RHS of equation (4) in such a way that the given trigonometric identities can be used to form a simpler solution.
\[ \Rightarrow \dfrac{{{{\tan }^2}2\theta - {{\tan }^2}\theta }}{{1 - {{\tan }^2}2\theta {{\tan }^2}\theta }} = \left\{ {\dfrac{{(\tan 2\theta - \tan \theta )}}{{(1 + \tan 2\theta \tan \theta )}}} \right\}\left\{ {\dfrac{{(\tan 2\theta + \tan \theta )}}{{(1 - \tan 2\theta \tan \theta )}}} \right\}\]...............… (5)
We can see the first bracket is similar to the identity\[\tan (A - B) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\]and the second bracket is similar to the identity\[\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\].
We write the simpler form of fractions using the identities.
\[ \Rightarrow \dfrac{{(\tan 2\theta - \tan \theta )}}{{(1 + \tan 2\theta \tan \theta )}} = \tan (2\theta - \theta )\] and \[\dfrac{{(\tan 2\theta + \tan \theta )}}{{(1 - \tan 2\theta \tan \theta )}} = \tan (2\theta + \theta )\]
Substitute the values back in the equation (5)
\[ \Rightarrow \dfrac{{{{\tan }^2}2\theta - {{\tan }^2}\theta }}{{1 - {{\tan }^2}2\theta {{\tan }^2}\theta }} = \left\{ {\tan (2\theta - \theta )} \right\}\left\{ {\tan (2\theta + \theta )} \right\}\]
Add and subtract the angles as required in the bracket.
\[ \Rightarrow \dfrac{{{{\tan }^2}2\theta - {{\tan }^2}\theta }}{{1 - {{\tan }^2}2\theta {{\tan }^2}\theta }} = \left\{ {\tan \theta } \right\}\left\{ {\tan 3\theta } \right\}\]
\[ \Rightarrow \dfrac{{{{\tan }^2}2\theta - {{\tan }^2}\theta }}{{1 - {{\tan }^2}2\theta {{\tan }^2}\theta }} = \tan 3\theta \tan \theta \]
Since RHS is \[\tan 3\theta \tan \theta \]
\[\therefore \]Correct option is C.
Note: Students many times make the mistake of solving the question by general multiplication after they open up the values using \[{a^2} - {b^2} = (a - b)(a + b)\]. This process will be very long and will have complex calculations; first we will multiply all the values then cancel terms and then take common factors.
Students many times try to solve the equation by substituting the value for \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\] and \[\tan 2\theta = \dfrac{{\sin 2\theta }}{{\cos 2\theta }}\], which will make the solution very complex and students should avoid this process of solving.
* Formula of \[\tan (A + B)\]is given as \[\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\]
* Formula of \[\tan (A - B)\]is given as \[\tan (A - B) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\]
Complete step by step solution:
We have to find the value of \[\dfrac{{{{\tan }^2}2\theta - {{\tan }^2}\theta }}{{1 - {{\tan }^2}2\theta {{\tan }^2}\theta }}\]............… (1)
Since we know \[{a^2} - {b^2} = (a - b)(a + b)\]
We have a numerator as \[{\tan ^2}2\theta - {\tan ^2}\theta \].
On comparing with the formula \[{a^2} - {b^2} = (a - b)(a + b)\], \[a = \tan 2\theta ,b = \tan \theta \]
\[ \Rightarrow {\tan ^2}2\theta - {\tan ^2}\theta = (\tan 2\theta - \tan \theta )(\tan 2\theta + \tan \theta )\]............… (2)
We have a denominator as \[1 - {\tan ^2}2\theta {\tan ^2}\theta \].
On comparing with the formula \[{a^2} - {b^2} = (a - b)(a + b)\], \[a = 1,b = \tan 2\theta \tan \theta \]
\[ \Rightarrow 1 - {\tan ^2}2\theta {\tan ^2}\theta = (1 - \tan 2\theta \tan \theta )(1 + \tan 2\theta \tan \theta )\]...............… (3)
Substitute the values of numerator from equation (2)and value of denominator from equation (3) in equation (1)
\[ \Rightarrow \dfrac{{{{\tan }^2}2\theta - {{\tan }^2}\theta }}{{1 - {{\tan }^2}2\theta {{\tan }^2}\theta }} = \dfrac{{(\tan 2\theta - \tan \theta )(\tan 2\theta + \tan \theta )}}{{(1 - \tan 2\theta \tan \theta )(1 + \tan 2\theta \tan \theta )}}\]................… (4)
Now we know the trigonometric identities \[\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\]and\[\tan (A - B) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\].
We pair the terms in RHS of equation (4) in such a way that the given trigonometric identities can be used to form a simpler solution.
\[ \Rightarrow \dfrac{{{{\tan }^2}2\theta - {{\tan }^2}\theta }}{{1 - {{\tan }^2}2\theta {{\tan }^2}\theta }} = \left\{ {\dfrac{{(\tan 2\theta - \tan \theta )}}{{(1 + \tan 2\theta \tan \theta )}}} \right\}\left\{ {\dfrac{{(\tan 2\theta + \tan \theta )}}{{(1 - \tan 2\theta \tan \theta )}}} \right\}\]...............… (5)
We can see the first bracket is similar to the identity\[\tan (A - B) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\]and the second bracket is similar to the identity\[\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\].
We write the simpler form of fractions using the identities.
\[ \Rightarrow \dfrac{{(\tan 2\theta - \tan \theta )}}{{(1 + \tan 2\theta \tan \theta )}} = \tan (2\theta - \theta )\] and \[\dfrac{{(\tan 2\theta + \tan \theta )}}{{(1 - \tan 2\theta \tan \theta )}} = \tan (2\theta + \theta )\]
Substitute the values back in the equation (5)
\[ \Rightarrow \dfrac{{{{\tan }^2}2\theta - {{\tan }^2}\theta }}{{1 - {{\tan }^2}2\theta {{\tan }^2}\theta }} = \left\{ {\tan (2\theta - \theta )} \right\}\left\{ {\tan (2\theta + \theta )} \right\}\]
Add and subtract the angles as required in the bracket.
\[ \Rightarrow \dfrac{{{{\tan }^2}2\theta - {{\tan }^2}\theta }}{{1 - {{\tan }^2}2\theta {{\tan }^2}\theta }} = \left\{ {\tan \theta } \right\}\left\{ {\tan 3\theta } \right\}\]
\[ \Rightarrow \dfrac{{{{\tan }^2}2\theta - {{\tan }^2}\theta }}{{1 - {{\tan }^2}2\theta {{\tan }^2}\theta }} = \tan 3\theta \tan \theta \]
Since RHS is \[\tan 3\theta \tan \theta \]
\[\therefore \]Correct option is C.
Note: Students many times make the mistake of solving the question by general multiplication after they open up the values using \[{a^2} - {b^2} = (a - b)(a + b)\]. This process will be very long and will have complex calculations; first we will multiply all the values then cancel terms and then take common factors.
Students many times try to solve the equation by substituting the value for \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\] and \[\tan 2\theta = \dfrac{{\sin 2\theta }}{{\cos 2\theta }}\], which will make the solution very complex and students should avoid this process of solving.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

