
Find the value of $\dfrac{{{{\cot }^2}15^\circ - 1}}{{{{\cot }^2}15^\circ + 1}} = $
A. $\dfrac{1}{2}$
B. $\dfrac{{\sqrt 3 }}{2}$
C. $3\dfrac{{\sqrt 3 }}{4}$
D. $\sqrt 3 $
Answer
415.2k+ views
Hint: First, we need to analyze the given information so that we can able to solve the problem. Generally, in Mathematics, the trigonometric Identities are useful whenever trigonometric functions are involved in an expression or an equation and these identities are useful whenever expressions involving trigonometric functions need to be simplified.
Here in this question, we are asked to find the value of $\dfrac{{{{\cot }^2}15^\circ - 1}}{{{{\cot }^2}15^\circ + 1}} $
We need to apply the appropriate trigonometric identities to obtain the required answer.
Formula to be used:
$\cot \theta = \dfrac{1}{{\tan \theta }}$
$\cos 2\theta = \dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}$
Complete step by step answer:
We are asked to calculate the value of $\dfrac{{{{\cot }^2}15^\circ - 1}}{{{{\cot }^2}15^\circ + 1}}$
\[\dfrac{{{{\cot }^2}15^\circ - 1}}{{{{\cot }^2}15^\circ + 1}} = \dfrac{{\dfrac{1}{{{{\tan }^2}15^\circ }} - 1}}{{\dfrac{1}{{{{\tan }^2}15^\circ }} + 1}}\](Here we applied $\cot \theta = \dfrac{1}{{\tan \theta }}$ )
$ = \dfrac{{\dfrac{{1 - {{\tan }^2}15^\circ }}{{{{\tan }^2}15^\circ }}}}{{\dfrac{{1 + {{\tan }^2}15^\circ }}{{{{\tan }^2}15^\circ }}}}$
$ = \dfrac{{1 - {{\tan }^2}15^\circ }}{{{{\tan }^2}15^\circ }} \times \dfrac{{{{\tan }^2}15^\circ }}{{1 + {{\tan }^2}15^\circ }}$
$ = \dfrac{{1 - {{\tan }^2}15^\circ }}{{1 + {{\tan }^2}15^\circ }}$
$ = \cos 2\left( {15^\circ } \right)$ (Here we applied the trigonometric identity $\cos 2\theta = \dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}$ )
$ = \cos 30^\circ $
$ = \dfrac{{\sqrt 3 }}{2}$
Hence, $\dfrac{{{{\cot }^2}15^\circ - 1}}{{{{\cot }^2}15^\circ + 1}} = \dfrac{{\sqrt 3 }}{2}$
So, the correct answer is “Option B”.
Note: If we are asked to calculate the value of a trigonometric expression, we need to first analyze the given problem where we are able to apply the trigonometric identities.
Here, we have applied some trigonometric identities/formulae that are needed to know to obtain the desired answer. Hence, we got$\dfrac{{{{\cot }^2}15^\circ - 1}}{{{{\cot }^2}15^\circ + 1}} = \dfrac{{\sqrt 3 }}{2}$.
Here in this question, we are asked to find the value of $\dfrac{{{{\cot }^2}15^\circ - 1}}{{{{\cot }^2}15^\circ + 1}} $
We need to apply the appropriate trigonometric identities to obtain the required answer.
Formula to be used:
$\cot \theta = \dfrac{1}{{\tan \theta }}$
$\cos 2\theta = \dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}$
Complete step by step answer:
We are asked to calculate the value of $\dfrac{{{{\cot }^2}15^\circ - 1}}{{{{\cot }^2}15^\circ + 1}}$
\[\dfrac{{{{\cot }^2}15^\circ - 1}}{{{{\cot }^2}15^\circ + 1}} = \dfrac{{\dfrac{1}{{{{\tan }^2}15^\circ }} - 1}}{{\dfrac{1}{{{{\tan }^2}15^\circ }} + 1}}\](Here we applied $\cot \theta = \dfrac{1}{{\tan \theta }}$ )
$ = \dfrac{{\dfrac{{1 - {{\tan }^2}15^\circ }}{{{{\tan }^2}15^\circ }}}}{{\dfrac{{1 + {{\tan }^2}15^\circ }}{{{{\tan }^2}15^\circ }}}}$
$ = \dfrac{{1 - {{\tan }^2}15^\circ }}{{{{\tan }^2}15^\circ }} \times \dfrac{{{{\tan }^2}15^\circ }}{{1 + {{\tan }^2}15^\circ }}$
$ = \dfrac{{1 - {{\tan }^2}15^\circ }}{{1 + {{\tan }^2}15^\circ }}$
$ = \cos 2\left( {15^\circ } \right)$ (Here we applied the trigonometric identity $\cos 2\theta = \dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}$ )
$ = \cos 30^\circ $
$ = \dfrac{{\sqrt 3 }}{2}$
Hence, $\dfrac{{{{\cot }^2}15^\circ - 1}}{{{{\cot }^2}15^\circ + 1}} = \dfrac{{\sqrt 3 }}{2}$
So, the correct answer is “Option B”.
Note: If we are asked to calculate the value of a trigonometric expression, we need to first analyze the given problem where we are able to apply the trigonometric identities.
Here, we have applied some trigonometric identities/formulae that are needed to know to obtain the desired answer. Hence, we got$\dfrac{{{{\cot }^2}15^\circ - 1}}{{{{\cot }^2}15^\circ + 1}} = \dfrac{{\sqrt 3 }}{2}$.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

Most of the Sinhalaspeaking people in Sri Lanka are class 12 social science CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

What I want should not be confused with total inactivity class 12 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
