
Find the value of: \[\dfrac{2}{{{{\left( {216} \right)}^{\dfrac{{ - 2}}{3}}}}} - \dfrac{4}{{{{\left( {243} \right)}^{ - \dfrac{1}{5}}}}} + \dfrac{1}{{{{\left( {256} \right)}^{\dfrac{{ - 3}}{4}}}}}\].
Answer
576.9k+ views
Hint: We know in exponents a number is multiplied by itself multiple times i.e. \[x\]raised to power\[y\]. Here \[x\] is called base and \[y\]is exponent. It is expressed as \[{x^y}\].Here we will use the law of exponent i.e.\[{a^{ - 1}} = \dfrac{1}{a}\].
Complete step-by-step solution:
Given =\[\dfrac{2}{{{{\left( {216} \right)}^{\dfrac{{ - 2}}{3}}}}} - \dfrac{4}{{{{\left( {243} \right)}^{ - \dfrac{1}{5}}}}} + \dfrac{1}{{{{\left( {256} \right)}^{\dfrac{{ - 3}}{4}}}}}\]
On substituting\[216 = 6 \times 6 \times 6\], \[243 = 3 \times 3 \times 3 \times 3 \times 3\]and \[256 = 4 \times 4 \times 4 \times 4\], we get:
\[ \Rightarrow \dfrac{2}{{{{\left( {6 \times 6 \times 6} \right)}^{\dfrac{{ - 2}}{3}}}}} - \dfrac{4}{{{{\left( {3 \times 3 \times 3 \times 3 \times 3} \right)}^{ - \dfrac{1}{5}}}}} + \dfrac{1}{{{{\left( {4 \times 4 \times 4 \times 4} \right)}^{\dfrac{{ - 3}}{4}}}}}\]
On substituting\[6 \times 6 \times 6 = {6^3}\], \[3 \times 3 \times 3 \times 3 \times 3 = {3^5}\]and \[4 \times 4 \times 4 \times 4 = {4^4}\], we get:
. \[ \Rightarrow \dfrac{2}{{{{\left( 6 \right)}^{3 \times }}^{\dfrac{{ - 2}}{3}}}} - \dfrac{4}{{{{\left( 3 \right)}^{5 \times }}^{\dfrac{{ - 1}}{5}}}} + \dfrac{1}{{{{\left( 4 \right)}^{4 \times }}^{\dfrac{{ - 3}}{4}}}}\]
On cancelling 3 by 3, 5 by 5 and 4 by 4, we get:
\[ \Rightarrow \dfrac{2}{{{{\left( 6 \right)}^{ - 2}}}} - \dfrac{4}{{{{\left( 3 \right)}^{ - 1}}}} + \dfrac{1}{{{{\left( 4 \right)}^{ - 3}}}}\]
On applying \[{a^1} = \dfrac{1}{{{a^{ - 1}}}}\] ,we get:
\[ \Rightarrow 2 \times {\left( 6 \right)^2} - 4{\left( 3 \right)^1} + {\left( 4 \right)^3}\]
\[ \Rightarrow 2 \times 36 - 4 \times 3 + 64\]
\[ \Rightarrow 72 - 12 + 64\]
\[ \Rightarrow 136 - 12\]
\[ \Rightarrow 124\].
Hence our required value is 124.
Note: These are some other laws of exponents that we must remember while solving such questions as they make the calculations easier.
(i) . \[{a^m} \times {a^n} = {a^{m + n}}\].
(ii). \[{a^m} \div {a^n} = {a^{m - n}}\].
(iii). \[{\left( {{a^m}} \right)^n} = {a^{mn}}\].
(iv). \[{a^m} \times {b^m} = {\left( {ab} \right)^m}\].
(v). \[{\left( a \right)^0} = 1\]
(vi). \[{a^m} \div {b^m} = {\left( {\dfrac{a}{b}} \right)^m}\]
\[(vii){a^{ - 1}} = \dfrac{1}{a}\]
We must remember that we can factorize numbers into powers with the help of L.C.M or prime factorization. The method of prime factorization is used to “break down” or express a given number as a product of prime numbers. More so, if a prime number occurs more than once in the factorization, it is usually expressed in exponential form to make it look more compact. Otherwise, we will have a long list of prime numbers being multiplied together.
Complete step-by-step solution:
Given =\[\dfrac{2}{{{{\left( {216} \right)}^{\dfrac{{ - 2}}{3}}}}} - \dfrac{4}{{{{\left( {243} \right)}^{ - \dfrac{1}{5}}}}} + \dfrac{1}{{{{\left( {256} \right)}^{\dfrac{{ - 3}}{4}}}}}\]
On substituting\[216 = 6 \times 6 \times 6\], \[243 = 3 \times 3 \times 3 \times 3 \times 3\]and \[256 = 4 \times 4 \times 4 \times 4\], we get:
\[ \Rightarrow \dfrac{2}{{{{\left( {6 \times 6 \times 6} \right)}^{\dfrac{{ - 2}}{3}}}}} - \dfrac{4}{{{{\left( {3 \times 3 \times 3 \times 3 \times 3} \right)}^{ - \dfrac{1}{5}}}}} + \dfrac{1}{{{{\left( {4 \times 4 \times 4 \times 4} \right)}^{\dfrac{{ - 3}}{4}}}}}\]
On substituting\[6 \times 6 \times 6 = {6^3}\], \[3 \times 3 \times 3 \times 3 \times 3 = {3^5}\]and \[4 \times 4 \times 4 \times 4 = {4^4}\], we get:
. \[ \Rightarrow \dfrac{2}{{{{\left( 6 \right)}^{3 \times }}^{\dfrac{{ - 2}}{3}}}} - \dfrac{4}{{{{\left( 3 \right)}^{5 \times }}^{\dfrac{{ - 1}}{5}}}} + \dfrac{1}{{{{\left( 4 \right)}^{4 \times }}^{\dfrac{{ - 3}}{4}}}}\]
On cancelling 3 by 3, 5 by 5 and 4 by 4, we get:
\[ \Rightarrow \dfrac{2}{{{{\left( 6 \right)}^{ - 2}}}} - \dfrac{4}{{{{\left( 3 \right)}^{ - 1}}}} + \dfrac{1}{{{{\left( 4 \right)}^{ - 3}}}}\]
On applying \[{a^1} = \dfrac{1}{{{a^{ - 1}}}}\] ,we get:
\[ \Rightarrow 2 \times {\left( 6 \right)^2} - 4{\left( 3 \right)^1} + {\left( 4 \right)^3}\]
\[ \Rightarrow 2 \times 36 - 4 \times 3 + 64\]
\[ \Rightarrow 72 - 12 + 64\]
\[ \Rightarrow 136 - 12\]
\[ \Rightarrow 124\].
Hence our required value is 124.
Note: These are some other laws of exponents that we must remember while solving such questions as they make the calculations easier.
(i) . \[{a^m} \times {a^n} = {a^{m + n}}\].
(ii). \[{a^m} \div {a^n} = {a^{m - n}}\].
(iii). \[{\left( {{a^m}} \right)^n} = {a^{mn}}\].
(iv). \[{a^m} \times {b^m} = {\left( {ab} \right)^m}\].
(v). \[{\left( a \right)^0} = 1\]
(vi). \[{a^m} \div {b^m} = {\left( {\dfrac{a}{b}} \right)^m}\]
\[(vii){a^{ - 1}} = \dfrac{1}{a}\]
We must remember that we can factorize numbers into powers with the help of L.C.M or prime factorization. The method of prime factorization is used to “break down” or express a given number as a product of prime numbers. More so, if a prime number occurs more than once in the factorization, it is usually expressed in exponential form to make it look more compact. Otherwise, we will have a long list of prime numbers being multiplied together.
Recently Updated Pages
Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the Full Form of ISI and RAW


