
Find the value of: \[\dfrac{2}{{{{\left( {216} \right)}^{\dfrac{{ - 2}}{3}}}}} - \dfrac{4}{{{{\left( {243} \right)}^{ - \dfrac{1}{5}}}}} + \dfrac{1}{{{{\left( {256} \right)}^{\dfrac{{ - 3}}{4}}}}}\].
Answer
590.7k+ views
Hint: We know in exponents a number is multiplied by itself multiple times i.e. \[x\]raised to power\[y\]. Here \[x\] is called base and \[y\]is exponent. It is expressed as \[{x^y}\].Here we will use the law of exponent i.e.\[{a^{ - 1}} = \dfrac{1}{a}\].
Complete step-by-step solution:
Given =\[\dfrac{2}{{{{\left( {216} \right)}^{\dfrac{{ - 2}}{3}}}}} - \dfrac{4}{{{{\left( {243} \right)}^{ - \dfrac{1}{5}}}}} + \dfrac{1}{{{{\left( {256} \right)}^{\dfrac{{ - 3}}{4}}}}}\]
On substituting\[216 = 6 \times 6 \times 6\], \[243 = 3 \times 3 \times 3 \times 3 \times 3\]and \[256 = 4 \times 4 \times 4 \times 4\], we get:
\[ \Rightarrow \dfrac{2}{{{{\left( {6 \times 6 \times 6} \right)}^{\dfrac{{ - 2}}{3}}}}} - \dfrac{4}{{{{\left( {3 \times 3 \times 3 \times 3 \times 3} \right)}^{ - \dfrac{1}{5}}}}} + \dfrac{1}{{{{\left( {4 \times 4 \times 4 \times 4} \right)}^{\dfrac{{ - 3}}{4}}}}}\]
On substituting\[6 \times 6 \times 6 = {6^3}\], \[3 \times 3 \times 3 \times 3 \times 3 = {3^5}\]and \[4 \times 4 \times 4 \times 4 = {4^4}\], we get:
. \[ \Rightarrow \dfrac{2}{{{{\left( 6 \right)}^{3 \times }}^{\dfrac{{ - 2}}{3}}}} - \dfrac{4}{{{{\left( 3 \right)}^{5 \times }}^{\dfrac{{ - 1}}{5}}}} + \dfrac{1}{{{{\left( 4 \right)}^{4 \times }}^{\dfrac{{ - 3}}{4}}}}\]
On cancelling 3 by 3, 5 by 5 and 4 by 4, we get:
\[ \Rightarrow \dfrac{2}{{{{\left( 6 \right)}^{ - 2}}}} - \dfrac{4}{{{{\left( 3 \right)}^{ - 1}}}} + \dfrac{1}{{{{\left( 4 \right)}^{ - 3}}}}\]
On applying \[{a^1} = \dfrac{1}{{{a^{ - 1}}}}\] ,we get:
\[ \Rightarrow 2 \times {\left( 6 \right)^2} - 4{\left( 3 \right)^1} + {\left( 4 \right)^3}\]
\[ \Rightarrow 2 \times 36 - 4 \times 3 + 64\]
\[ \Rightarrow 72 - 12 + 64\]
\[ \Rightarrow 136 - 12\]
\[ \Rightarrow 124\].
Hence our required value is 124.
Note: These are some other laws of exponents that we must remember while solving such questions as they make the calculations easier.
(i) . \[{a^m} \times {a^n} = {a^{m + n}}\].
(ii). \[{a^m} \div {a^n} = {a^{m - n}}\].
(iii). \[{\left( {{a^m}} \right)^n} = {a^{mn}}\].
(iv). \[{a^m} \times {b^m} = {\left( {ab} \right)^m}\].
(v). \[{\left( a \right)^0} = 1\]
(vi). \[{a^m} \div {b^m} = {\left( {\dfrac{a}{b}} \right)^m}\]
\[(vii){a^{ - 1}} = \dfrac{1}{a}\]
We must remember that we can factorize numbers into powers with the help of L.C.M or prime factorization. The method of prime factorization is used to “break down” or express a given number as a product of prime numbers. More so, if a prime number occurs more than once in the factorization, it is usually expressed in exponential form to make it look more compact. Otherwise, we will have a long list of prime numbers being multiplied together.
Complete step-by-step solution:
Given =\[\dfrac{2}{{{{\left( {216} \right)}^{\dfrac{{ - 2}}{3}}}}} - \dfrac{4}{{{{\left( {243} \right)}^{ - \dfrac{1}{5}}}}} + \dfrac{1}{{{{\left( {256} \right)}^{\dfrac{{ - 3}}{4}}}}}\]
On substituting\[216 = 6 \times 6 \times 6\], \[243 = 3 \times 3 \times 3 \times 3 \times 3\]and \[256 = 4 \times 4 \times 4 \times 4\], we get:
\[ \Rightarrow \dfrac{2}{{{{\left( {6 \times 6 \times 6} \right)}^{\dfrac{{ - 2}}{3}}}}} - \dfrac{4}{{{{\left( {3 \times 3 \times 3 \times 3 \times 3} \right)}^{ - \dfrac{1}{5}}}}} + \dfrac{1}{{{{\left( {4 \times 4 \times 4 \times 4} \right)}^{\dfrac{{ - 3}}{4}}}}}\]
On substituting\[6 \times 6 \times 6 = {6^3}\], \[3 \times 3 \times 3 \times 3 \times 3 = {3^5}\]and \[4 \times 4 \times 4 \times 4 = {4^4}\], we get:
. \[ \Rightarrow \dfrac{2}{{{{\left( 6 \right)}^{3 \times }}^{\dfrac{{ - 2}}{3}}}} - \dfrac{4}{{{{\left( 3 \right)}^{5 \times }}^{\dfrac{{ - 1}}{5}}}} + \dfrac{1}{{{{\left( 4 \right)}^{4 \times }}^{\dfrac{{ - 3}}{4}}}}\]
On cancelling 3 by 3, 5 by 5 and 4 by 4, we get:
\[ \Rightarrow \dfrac{2}{{{{\left( 6 \right)}^{ - 2}}}} - \dfrac{4}{{{{\left( 3 \right)}^{ - 1}}}} + \dfrac{1}{{{{\left( 4 \right)}^{ - 3}}}}\]
On applying \[{a^1} = \dfrac{1}{{{a^{ - 1}}}}\] ,we get:
\[ \Rightarrow 2 \times {\left( 6 \right)^2} - 4{\left( 3 \right)^1} + {\left( 4 \right)^3}\]
\[ \Rightarrow 2 \times 36 - 4 \times 3 + 64\]
\[ \Rightarrow 72 - 12 + 64\]
\[ \Rightarrow 136 - 12\]
\[ \Rightarrow 124\].
Hence our required value is 124.
Note: These are some other laws of exponents that we must remember while solving such questions as they make the calculations easier.
(i) . \[{a^m} \times {a^n} = {a^{m + n}}\].
(ii). \[{a^m} \div {a^n} = {a^{m - n}}\].
(iii). \[{\left( {{a^m}} \right)^n} = {a^{mn}}\].
(iv). \[{a^m} \times {b^m} = {\left( {ab} \right)^m}\].
(v). \[{\left( a \right)^0} = 1\]
(vi). \[{a^m} \div {b^m} = {\left( {\dfrac{a}{b}} \right)^m}\]
\[(vii){a^{ - 1}} = \dfrac{1}{a}\]
We must remember that we can factorize numbers into powers with the help of L.C.M or prime factorization. The method of prime factorization is used to “break down” or express a given number as a product of prime numbers. More so, if a prime number occurs more than once in the factorization, it is usually expressed in exponential form to make it look more compact. Otherwise, we will have a long list of prime numbers being multiplied together.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which places in India experience sunrise first and class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE

What is the full form of pH?


