
Find the value of $\dfrac{{{{(0.6)}^0} - {{(0.1)}^{ - 1}}}}{{{{\left( {\dfrac{3}{8}} \right)}^{ - 1}}{{\left( {\dfrac{3}{2}} \right)}^3} + {{\left( {\dfrac{{ - 1}}{3}} \right)}^{ - 1}}}}$
A) $\dfrac{{ - 2}}{3}$
B) $\dfrac{3}{2}$
C) $ - \dfrac{3}{2}$
D) $\dfrac{2}{3}$
Answer
548.4k+ views
Hint:
In the above problem, we will first convert the decimal values to fractions. Then we will apply appropriate laws of exponents to the numerator and denominator. Finally, we will simplify the resulting fraction to get the required value.
Formula used:
We will use laws of exponents:
1) ${(a)^0} = 1$
2) ${(a)^{ - 1}} = \dfrac{1}{a}$
3) $\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}},m > n$
4) ${\left( {\dfrac{a}{b}} \right)^m} = \dfrac{{{a^m}}}{{{b^m}}}$
Complete step by step solution:
The given expression is $\dfrac{{{{(0.6)}^0} - {{(0.1)}^{ - 1}}}}{{{{\left( {\dfrac{3}{8}} \right)}^{ - 1}}{{\left( {\dfrac{3}{2}} \right)}^3} + {{\left( {\dfrac{{ - 1}}{3}} \right)}^{ - 1}}}}$ …………………………..$\left( 1 \right)$
We will first write $0.6$ and $0.1$ as fractional values.
We can write $0.6$ as $\dfrac{6}{{10}}$ and $0.1$ as $\dfrac{1}{{10}}$.
The numerator becomes ${\left( {\dfrac{6}{{10}}} \right)^0} - {\left( {\dfrac{1}{{10}}} \right)^{ - 1}}$.
We will now apply the laws of exponents ${(a)^0} = 1$ and ${(a)^{ - 1}} = \dfrac{1}{a}$ to ${\left( {\dfrac{6}{{10}}} \right)^0}{\text{ and }}{\left( {\dfrac{1}{{10}}} \right)^{ - 1}}$ respectively.
Thus, we get
${\left( {\dfrac{6}{{10}}} \right)^0} - {\left( {\dfrac{1}{{10}}} \right)^{ - 1}} = 1 - \left( {\dfrac{1}{{\left( {\dfrac{1}{{10}}} \right)}}} \right)$
Simplifying the expression, we get
$ \Rightarrow {\left( {\dfrac{6}{{10}}} \right)^0} - {\left( {\dfrac{1}{{10}}} \right)^{ - 1}} = 1 - 10 = - 9$
So, the numerator’s value is $ - 9$.
Now, the denominator is ${\left( {\dfrac{3}{8}} \right)^{ - 1}}{\left( {\dfrac{3}{2}} \right)^3} + {\left( {\dfrac{{ - 1}}{3}} \right)^{ - 1}}$.
Applying ${(a)^{ - 1}} = \dfrac{1}{a}$ to ${\left( {\dfrac{3}{8}} \right)^{ - 1}}$ , we get
${\left( {\dfrac{3}{8}} \right)^{ - 1}} = \left( {\dfrac{1}{{\left( {\dfrac{3}{8}} \right)}}} \right) = \dfrac{8}{3}$.
Again, applying ${(a)^{ - 1}} = \dfrac{1}{a}$ to ${\left( {\dfrac{{ - 1}}{3}} \right)^{ - 1}}$, we have
${\left( {\dfrac{{ - 1}}{3}} \right)^{ - 1}} = \left( {\dfrac{1}{{\left( {\dfrac{{ - 1}}{3}} \right)}}} \right) = \dfrac{3}{{ - 1}} = - 3$.
Thus,
${\left( {\dfrac{3}{8}} \right)^{ - 1}}{\left( {\dfrac{3}{2}} \right)^3} + {\left( {\dfrac{{ - 1}}{3}} \right)^{ - 1}} = \left( {\dfrac{8}{3}} \right){\left( {\dfrac{3}{2}} \right)^3} + ( - 3)$ ……………………………………$\left( 2 \right)$
We can write 8 in terms of powers of 2 as $8 = 2 \times 2 \times 2 = {2^3}$. Substituting this in equation $\left( 2 \right)$, we have
$ \Rightarrow {\left( {\dfrac{3}{8}} \right)^{ - 1}}{\left( {\dfrac{3}{2}} \right)^3} + {\left( {\dfrac{{ - 1}}{3}} \right)^{ - 1}} = \left( {\dfrac{{{2^3}}}{3}} \right){\left( {\dfrac{3}{2}} \right)^3} + ( - 3)$ ……………………………………$\left( 3 \right)$
We will now apply ${\left( {\dfrac{a}{b}} \right)^m} = \dfrac{{{a^m}}}{{{b^m}}}$ to ${\left( {\dfrac{3}{2}} \right)^3}$. This gives us
${\left( {\dfrac{3}{2}} \right)^3} = \dfrac{{{3^3}}}{{{2^3}}}$.
Substituting this in equation $\left( 3 \right)$, we get
$ \Rightarrow {\left( {\dfrac{3}{8}} \right)^{ - 1}}{\left( {\dfrac{3}{2}} \right)^3} + {\left( {\dfrac{{ - 1}}{3}} \right)^{ - 1}} = \left( {\dfrac{{{2^3}}}{3}} \right)\left( {\dfrac{{{3^3}}}{{{2^3}}}} \right) + ( - 3)$ …………………………………….$\left( 4 \right)$
We see that in the first term, ${2^3}$ is both in the numerator and in the denominator. We can cancel out ${2^3}$. So, equation $\left( 4 \right)$ becomes
${\left( {\dfrac{3}{8}} \right)^{ - 1}}{\left( {\dfrac{3}{2}} \right)^3} + {\left( {\dfrac{{ - 1}}{3}} \right)^{ - 1}} = \left( {\dfrac{{{3^3}}}{3}} \right) + ( - 3)$…………………………………….$\left( 5 \right)$
Let us now apply the law $\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}},m > n$ to $\dfrac{{{3^3}}}{3}$, where $m = 3$and $n = 1$. Hence, we get
${\left( {\dfrac{3}{8}} \right)^{ - 1}}{\left( {\dfrac{3}{2}} \right)^3} + {\left( {\dfrac{{ - 1}}{3}} \right)^{ - 1}} = 9 + ( - 3) = 6$.
Thus, the value of the denominator is 6.
Using the value of the numerator and denominator in equation $\left( 1 \right)$, we have
$\dfrac{{{{(0.6)}^0} - {{(0.1)}^{ - 1}}}}{{{{\left( {\dfrac{3}{8}} \right)}^{ - 1}}{{\left( {\dfrac{3}{2}} \right)}^3} + {{\left( {\dfrac{{ - 1}}{3}} \right)}^{ - 1}}}} = \dfrac{{ - 9}}{6}$.
We have to reduce $\dfrac{{ - 9}}{6}$ to its lowest form. Both $ - 9{\text{ and }}6$are divisible by 3.
So, $\dfrac{{ - 9}}{6} = \dfrac{{ - 3}}{2}$. Therefore,
$ \Rightarrow \dfrac{{{{(0.6)}^0} - {{(0.1)}^{ - 1}}}}{{{{\left( {\dfrac{3}{8}} \right)}^{ - 1}}{{\left( {\dfrac{3}{2}} \right)}^3} + {{\left( {\dfrac{{ - 1}}{3}} \right)}^{ - 1}}}} = \dfrac{{ - 3}}{2}$
Thus option C the correct option.
Note:
The law of exponent ${(a)^{ - 1}} = \dfrac{1}{a}$ is a particular case of ${(a)^{ - m}} = \dfrac{1}{{{a^m}}}$, where $m > 0$. Here we have used $m = 1$. Here, we have converted the decimal number in numerator into fraction because the denominator has numbers in fraction form. Also, it is easy to apply rules of exponent on fraction then on the decimal number.
In the above problem, we will first convert the decimal values to fractions. Then we will apply appropriate laws of exponents to the numerator and denominator. Finally, we will simplify the resulting fraction to get the required value.
Formula used:
We will use laws of exponents:
1) ${(a)^0} = 1$
2) ${(a)^{ - 1}} = \dfrac{1}{a}$
3) $\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}},m > n$
4) ${\left( {\dfrac{a}{b}} \right)^m} = \dfrac{{{a^m}}}{{{b^m}}}$
Complete step by step solution:
The given expression is $\dfrac{{{{(0.6)}^0} - {{(0.1)}^{ - 1}}}}{{{{\left( {\dfrac{3}{8}} \right)}^{ - 1}}{{\left( {\dfrac{3}{2}} \right)}^3} + {{\left( {\dfrac{{ - 1}}{3}} \right)}^{ - 1}}}}$ …………………………..$\left( 1 \right)$
We will first write $0.6$ and $0.1$ as fractional values.
We can write $0.6$ as $\dfrac{6}{{10}}$ and $0.1$ as $\dfrac{1}{{10}}$.
The numerator becomes ${\left( {\dfrac{6}{{10}}} \right)^0} - {\left( {\dfrac{1}{{10}}} \right)^{ - 1}}$.
We will now apply the laws of exponents ${(a)^0} = 1$ and ${(a)^{ - 1}} = \dfrac{1}{a}$ to ${\left( {\dfrac{6}{{10}}} \right)^0}{\text{ and }}{\left( {\dfrac{1}{{10}}} \right)^{ - 1}}$ respectively.
Thus, we get
${\left( {\dfrac{6}{{10}}} \right)^0} - {\left( {\dfrac{1}{{10}}} \right)^{ - 1}} = 1 - \left( {\dfrac{1}{{\left( {\dfrac{1}{{10}}} \right)}}} \right)$
Simplifying the expression, we get
$ \Rightarrow {\left( {\dfrac{6}{{10}}} \right)^0} - {\left( {\dfrac{1}{{10}}} \right)^{ - 1}} = 1 - 10 = - 9$
So, the numerator’s value is $ - 9$.
Now, the denominator is ${\left( {\dfrac{3}{8}} \right)^{ - 1}}{\left( {\dfrac{3}{2}} \right)^3} + {\left( {\dfrac{{ - 1}}{3}} \right)^{ - 1}}$.
Applying ${(a)^{ - 1}} = \dfrac{1}{a}$ to ${\left( {\dfrac{3}{8}} \right)^{ - 1}}$ , we get
${\left( {\dfrac{3}{8}} \right)^{ - 1}} = \left( {\dfrac{1}{{\left( {\dfrac{3}{8}} \right)}}} \right) = \dfrac{8}{3}$.
Again, applying ${(a)^{ - 1}} = \dfrac{1}{a}$ to ${\left( {\dfrac{{ - 1}}{3}} \right)^{ - 1}}$, we have
${\left( {\dfrac{{ - 1}}{3}} \right)^{ - 1}} = \left( {\dfrac{1}{{\left( {\dfrac{{ - 1}}{3}} \right)}}} \right) = \dfrac{3}{{ - 1}} = - 3$.
Thus,
${\left( {\dfrac{3}{8}} \right)^{ - 1}}{\left( {\dfrac{3}{2}} \right)^3} + {\left( {\dfrac{{ - 1}}{3}} \right)^{ - 1}} = \left( {\dfrac{8}{3}} \right){\left( {\dfrac{3}{2}} \right)^3} + ( - 3)$ ……………………………………$\left( 2 \right)$
We can write 8 in terms of powers of 2 as $8 = 2 \times 2 \times 2 = {2^3}$. Substituting this in equation $\left( 2 \right)$, we have
$ \Rightarrow {\left( {\dfrac{3}{8}} \right)^{ - 1}}{\left( {\dfrac{3}{2}} \right)^3} + {\left( {\dfrac{{ - 1}}{3}} \right)^{ - 1}} = \left( {\dfrac{{{2^3}}}{3}} \right){\left( {\dfrac{3}{2}} \right)^3} + ( - 3)$ ……………………………………$\left( 3 \right)$
We will now apply ${\left( {\dfrac{a}{b}} \right)^m} = \dfrac{{{a^m}}}{{{b^m}}}$ to ${\left( {\dfrac{3}{2}} \right)^3}$. This gives us
${\left( {\dfrac{3}{2}} \right)^3} = \dfrac{{{3^3}}}{{{2^3}}}$.
Substituting this in equation $\left( 3 \right)$, we get
$ \Rightarrow {\left( {\dfrac{3}{8}} \right)^{ - 1}}{\left( {\dfrac{3}{2}} \right)^3} + {\left( {\dfrac{{ - 1}}{3}} \right)^{ - 1}} = \left( {\dfrac{{{2^3}}}{3}} \right)\left( {\dfrac{{{3^3}}}{{{2^3}}}} \right) + ( - 3)$ …………………………………….$\left( 4 \right)$
We see that in the first term, ${2^3}$ is both in the numerator and in the denominator. We can cancel out ${2^3}$. So, equation $\left( 4 \right)$ becomes
${\left( {\dfrac{3}{8}} \right)^{ - 1}}{\left( {\dfrac{3}{2}} \right)^3} + {\left( {\dfrac{{ - 1}}{3}} \right)^{ - 1}} = \left( {\dfrac{{{3^3}}}{3}} \right) + ( - 3)$…………………………………….$\left( 5 \right)$
Let us now apply the law $\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}},m > n$ to $\dfrac{{{3^3}}}{3}$, where $m = 3$and $n = 1$. Hence, we get
${\left( {\dfrac{3}{8}} \right)^{ - 1}}{\left( {\dfrac{3}{2}} \right)^3} + {\left( {\dfrac{{ - 1}}{3}} \right)^{ - 1}} = 9 + ( - 3) = 6$.
Thus, the value of the denominator is 6.
Using the value of the numerator and denominator in equation $\left( 1 \right)$, we have
$\dfrac{{{{(0.6)}^0} - {{(0.1)}^{ - 1}}}}{{{{\left( {\dfrac{3}{8}} \right)}^{ - 1}}{{\left( {\dfrac{3}{2}} \right)}^3} + {{\left( {\dfrac{{ - 1}}{3}} \right)}^{ - 1}}}} = \dfrac{{ - 9}}{6}$.
We have to reduce $\dfrac{{ - 9}}{6}$ to its lowest form. Both $ - 9{\text{ and }}6$are divisible by 3.
So, $\dfrac{{ - 9}}{6} = \dfrac{{ - 3}}{2}$. Therefore,
$ \Rightarrow \dfrac{{{{(0.6)}^0} - {{(0.1)}^{ - 1}}}}{{{{\left( {\dfrac{3}{8}} \right)}^{ - 1}}{{\left( {\dfrac{3}{2}} \right)}^3} + {{\left( {\dfrac{{ - 1}}{3}} \right)}^{ - 1}}}} = \dfrac{{ - 3}}{2}$
Thus option C the correct option.
Note:
The law of exponent ${(a)^{ - 1}} = \dfrac{1}{a}$ is a particular case of ${(a)^{ - m}} = \dfrac{1}{{{a^m}}}$, where $m > 0$. Here we have used $m = 1$. Here, we have converted the decimal number in numerator into fraction because the denominator has numbers in fraction form. Also, it is easy to apply rules of exponent on fraction then on the decimal number.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Which one of the following groups comprises states class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

A couple went for a picnic They have 5 sons and each class 8 maths CBSE

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE


