
Find the value of $\dfrac{{{{(0.6)}^0} - {{(0.1)}^{ - 1}}}}{{{{\left( {\dfrac{3}{8}} \right)}^{ - 1}}{{\left( {\dfrac{3}{2}} \right)}^3} + {{\left( {\dfrac{{ - 1}}{3}} \right)}^{ - 1}}}}$
A) $\dfrac{{ - 2}}{3}$
B) $\dfrac{3}{2}$
C) $ - \dfrac{3}{2}$
D) $\dfrac{2}{3}$
Answer
467.7k+ views
Hint:
In the above problem, we will first convert the decimal values to fractions. Then we will apply appropriate laws of exponents to the numerator and denominator. Finally, we will simplify the resulting fraction to get the required value.
Formula used:
We will use laws of exponents:
1) ${(a)^0} = 1$
2) ${(a)^{ - 1}} = \dfrac{1}{a}$
3) $\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}},m > n$
4) ${\left( {\dfrac{a}{b}} \right)^m} = \dfrac{{{a^m}}}{{{b^m}}}$
Complete step by step solution:
The given expression is $\dfrac{{{{(0.6)}^0} - {{(0.1)}^{ - 1}}}}{{{{\left( {\dfrac{3}{8}} \right)}^{ - 1}}{{\left( {\dfrac{3}{2}} \right)}^3} + {{\left( {\dfrac{{ - 1}}{3}} \right)}^{ - 1}}}}$ …………………………..$\left( 1 \right)$
We will first write $0.6$ and $0.1$ as fractional values.
We can write $0.6$ as $\dfrac{6}{{10}}$ and $0.1$ as $\dfrac{1}{{10}}$.
The numerator becomes ${\left( {\dfrac{6}{{10}}} \right)^0} - {\left( {\dfrac{1}{{10}}} \right)^{ - 1}}$.
We will now apply the laws of exponents ${(a)^0} = 1$ and ${(a)^{ - 1}} = \dfrac{1}{a}$ to ${\left( {\dfrac{6}{{10}}} \right)^0}{\text{ and }}{\left( {\dfrac{1}{{10}}} \right)^{ - 1}}$ respectively.
Thus, we get
${\left( {\dfrac{6}{{10}}} \right)^0} - {\left( {\dfrac{1}{{10}}} \right)^{ - 1}} = 1 - \left( {\dfrac{1}{{\left( {\dfrac{1}{{10}}} \right)}}} \right)$
Simplifying the expression, we get
$ \Rightarrow {\left( {\dfrac{6}{{10}}} \right)^0} - {\left( {\dfrac{1}{{10}}} \right)^{ - 1}} = 1 - 10 = - 9$
So, the numerator’s value is $ - 9$.
Now, the denominator is ${\left( {\dfrac{3}{8}} \right)^{ - 1}}{\left( {\dfrac{3}{2}} \right)^3} + {\left( {\dfrac{{ - 1}}{3}} \right)^{ - 1}}$.
Applying ${(a)^{ - 1}} = \dfrac{1}{a}$ to ${\left( {\dfrac{3}{8}} \right)^{ - 1}}$ , we get
${\left( {\dfrac{3}{8}} \right)^{ - 1}} = \left( {\dfrac{1}{{\left( {\dfrac{3}{8}} \right)}}} \right) = \dfrac{8}{3}$.
Again, applying ${(a)^{ - 1}} = \dfrac{1}{a}$ to ${\left( {\dfrac{{ - 1}}{3}} \right)^{ - 1}}$, we have
${\left( {\dfrac{{ - 1}}{3}} \right)^{ - 1}} = \left( {\dfrac{1}{{\left( {\dfrac{{ - 1}}{3}} \right)}}} \right) = \dfrac{3}{{ - 1}} = - 3$.
Thus,
${\left( {\dfrac{3}{8}} \right)^{ - 1}}{\left( {\dfrac{3}{2}} \right)^3} + {\left( {\dfrac{{ - 1}}{3}} \right)^{ - 1}} = \left( {\dfrac{8}{3}} \right){\left( {\dfrac{3}{2}} \right)^3} + ( - 3)$ ……………………………………$\left( 2 \right)$
We can write 8 in terms of powers of 2 as $8 = 2 \times 2 \times 2 = {2^3}$. Substituting this in equation $\left( 2 \right)$, we have
$ \Rightarrow {\left( {\dfrac{3}{8}} \right)^{ - 1}}{\left( {\dfrac{3}{2}} \right)^3} + {\left( {\dfrac{{ - 1}}{3}} \right)^{ - 1}} = \left( {\dfrac{{{2^3}}}{3}} \right){\left( {\dfrac{3}{2}} \right)^3} + ( - 3)$ ……………………………………$\left( 3 \right)$
We will now apply ${\left( {\dfrac{a}{b}} \right)^m} = \dfrac{{{a^m}}}{{{b^m}}}$ to ${\left( {\dfrac{3}{2}} \right)^3}$. This gives us
${\left( {\dfrac{3}{2}} \right)^3} = \dfrac{{{3^3}}}{{{2^3}}}$.
Substituting this in equation $\left( 3 \right)$, we get
$ \Rightarrow {\left( {\dfrac{3}{8}} \right)^{ - 1}}{\left( {\dfrac{3}{2}} \right)^3} + {\left( {\dfrac{{ - 1}}{3}} \right)^{ - 1}} = \left( {\dfrac{{{2^3}}}{3}} \right)\left( {\dfrac{{{3^3}}}{{{2^3}}}} \right) + ( - 3)$ …………………………………….$\left( 4 \right)$
We see that in the first term, ${2^3}$ is both in the numerator and in the denominator. We can cancel out ${2^3}$. So, equation $\left( 4 \right)$ becomes
${\left( {\dfrac{3}{8}} \right)^{ - 1}}{\left( {\dfrac{3}{2}} \right)^3} + {\left( {\dfrac{{ - 1}}{3}} \right)^{ - 1}} = \left( {\dfrac{{{3^3}}}{3}} \right) + ( - 3)$…………………………………….$\left( 5 \right)$
Let us now apply the law $\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}},m > n$ to $\dfrac{{{3^3}}}{3}$, where $m = 3$and $n = 1$. Hence, we get
${\left( {\dfrac{3}{8}} \right)^{ - 1}}{\left( {\dfrac{3}{2}} \right)^3} + {\left( {\dfrac{{ - 1}}{3}} \right)^{ - 1}} = 9 + ( - 3) = 6$.
Thus, the value of the denominator is 6.
Using the value of the numerator and denominator in equation $\left( 1 \right)$, we have
$\dfrac{{{{(0.6)}^0} - {{(0.1)}^{ - 1}}}}{{{{\left( {\dfrac{3}{8}} \right)}^{ - 1}}{{\left( {\dfrac{3}{2}} \right)}^3} + {{\left( {\dfrac{{ - 1}}{3}} \right)}^{ - 1}}}} = \dfrac{{ - 9}}{6}$.
We have to reduce $\dfrac{{ - 9}}{6}$ to its lowest form. Both $ - 9{\text{ and }}6$are divisible by 3.
So, $\dfrac{{ - 9}}{6} = \dfrac{{ - 3}}{2}$. Therefore,
$ \Rightarrow \dfrac{{{{(0.6)}^0} - {{(0.1)}^{ - 1}}}}{{{{\left( {\dfrac{3}{8}} \right)}^{ - 1}}{{\left( {\dfrac{3}{2}} \right)}^3} + {{\left( {\dfrac{{ - 1}}{3}} \right)}^{ - 1}}}} = \dfrac{{ - 3}}{2}$
Thus option C the correct option.
Note:
The law of exponent ${(a)^{ - 1}} = \dfrac{1}{a}$ is a particular case of ${(a)^{ - m}} = \dfrac{1}{{{a^m}}}$, where $m > 0$. Here we have used $m = 1$. Here, we have converted the decimal number in numerator into fraction because the denominator has numbers in fraction form. Also, it is easy to apply rules of exponent on fraction then on the decimal number.
In the above problem, we will first convert the decimal values to fractions. Then we will apply appropriate laws of exponents to the numerator and denominator. Finally, we will simplify the resulting fraction to get the required value.
Formula used:
We will use laws of exponents:
1) ${(a)^0} = 1$
2) ${(a)^{ - 1}} = \dfrac{1}{a}$
3) $\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}},m > n$
4) ${\left( {\dfrac{a}{b}} \right)^m} = \dfrac{{{a^m}}}{{{b^m}}}$
Complete step by step solution:
The given expression is $\dfrac{{{{(0.6)}^0} - {{(0.1)}^{ - 1}}}}{{{{\left( {\dfrac{3}{8}} \right)}^{ - 1}}{{\left( {\dfrac{3}{2}} \right)}^3} + {{\left( {\dfrac{{ - 1}}{3}} \right)}^{ - 1}}}}$ …………………………..$\left( 1 \right)$
We will first write $0.6$ and $0.1$ as fractional values.
We can write $0.6$ as $\dfrac{6}{{10}}$ and $0.1$ as $\dfrac{1}{{10}}$.
The numerator becomes ${\left( {\dfrac{6}{{10}}} \right)^0} - {\left( {\dfrac{1}{{10}}} \right)^{ - 1}}$.
We will now apply the laws of exponents ${(a)^0} = 1$ and ${(a)^{ - 1}} = \dfrac{1}{a}$ to ${\left( {\dfrac{6}{{10}}} \right)^0}{\text{ and }}{\left( {\dfrac{1}{{10}}} \right)^{ - 1}}$ respectively.
Thus, we get
${\left( {\dfrac{6}{{10}}} \right)^0} - {\left( {\dfrac{1}{{10}}} \right)^{ - 1}} = 1 - \left( {\dfrac{1}{{\left( {\dfrac{1}{{10}}} \right)}}} \right)$
Simplifying the expression, we get
$ \Rightarrow {\left( {\dfrac{6}{{10}}} \right)^0} - {\left( {\dfrac{1}{{10}}} \right)^{ - 1}} = 1 - 10 = - 9$
So, the numerator’s value is $ - 9$.
Now, the denominator is ${\left( {\dfrac{3}{8}} \right)^{ - 1}}{\left( {\dfrac{3}{2}} \right)^3} + {\left( {\dfrac{{ - 1}}{3}} \right)^{ - 1}}$.
Applying ${(a)^{ - 1}} = \dfrac{1}{a}$ to ${\left( {\dfrac{3}{8}} \right)^{ - 1}}$ , we get
${\left( {\dfrac{3}{8}} \right)^{ - 1}} = \left( {\dfrac{1}{{\left( {\dfrac{3}{8}} \right)}}} \right) = \dfrac{8}{3}$.
Again, applying ${(a)^{ - 1}} = \dfrac{1}{a}$ to ${\left( {\dfrac{{ - 1}}{3}} \right)^{ - 1}}$, we have
${\left( {\dfrac{{ - 1}}{3}} \right)^{ - 1}} = \left( {\dfrac{1}{{\left( {\dfrac{{ - 1}}{3}} \right)}}} \right) = \dfrac{3}{{ - 1}} = - 3$.
Thus,
${\left( {\dfrac{3}{8}} \right)^{ - 1}}{\left( {\dfrac{3}{2}} \right)^3} + {\left( {\dfrac{{ - 1}}{3}} \right)^{ - 1}} = \left( {\dfrac{8}{3}} \right){\left( {\dfrac{3}{2}} \right)^3} + ( - 3)$ ……………………………………$\left( 2 \right)$
We can write 8 in terms of powers of 2 as $8 = 2 \times 2 \times 2 = {2^3}$. Substituting this in equation $\left( 2 \right)$, we have
$ \Rightarrow {\left( {\dfrac{3}{8}} \right)^{ - 1}}{\left( {\dfrac{3}{2}} \right)^3} + {\left( {\dfrac{{ - 1}}{3}} \right)^{ - 1}} = \left( {\dfrac{{{2^3}}}{3}} \right){\left( {\dfrac{3}{2}} \right)^3} + ( - 3)$ ……………………………………$\left( 3 \right)$
We will now apply ${\left( {\dfrac{a}{b}} \right)^m} = \dfrac{{{a^m}}}{{{b^m}}}$ to ${\left( {\dfrac{3}{2}} \right)^3}$. This gives us
${\left( {\dfrac{3}{2}} \right)^3} = \dfrac{{{3^3}}}{{{2^3}}}$.
Substituting this in equation $\left( 3 \right)$, we get
$ \Rightarrow {\left( {\dfrac{3}{8}} \right)^{ - 1}}{\left( {\dfrac{3}{2}} \right)^3} + {\left( {\dfrac{{ - 1}}{3}} \right)^{ - 1}} = \left( {\dfrac{{{2^3}}}{3}} \right)\left( {\dfrac{{{3^3}}}{{{2^3}}}} \right) + ( - 3)$ …………………………………….$\left( 4 \right)$
We see that in the first term, ${2^3}$ is both in the numerator and in the denominator. We can cancel out ${2^3}$. So, equation $\left( 4 \right)$ becomes
${\left( {\dfrac{3}{8}} \right)^{ - 1}}{\left( {\dfrac{3}{2}} \right)^3} + {\left( {\dfrac{{ - 1}}{3}} \right)^{ - 1}} = \left( {\dfrac{{{3^3}}}{3}} \right) + ( - 3)$…………………………………….$\left( 5 \right)$
Let us now apply the law $\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}},m > n$ to $\dfrac{{{3^3}}}{3}$, where $m = 3$and $n = 1$. Hence, we get
${\left( {\dfrac{3}{8}} \right)^{ - 1}}{\left( {\dfrac{3}{2}} \right)^3} + {\left( {\dfrac{{ - 1}}{3}} \right)^{ - 1}} = 9 + ( - 3) = 6$.
Thus, the value of the denominator is 6.
Using the value of the numerator and denominator in equation $\left( 1 \right)$, we have
$\dfrac{{{{(0.6)}^0} - {{(0.1)}^{ - 1}}}}{{{{\left( {\dfrac{3}{8}} \right)}^{ - 1}}{{\left( {\dfrac{3}{2}} \right)}^3} + {{\left( {\dfrac{{ - 1}}{3}} \right)}^{ - 1}}}} = \dfrac{{ - 9}}{6}$.
We have to reduce $\dfrac{{ - 9}}{6}$ to its lowest form. Both $ - 9{\text{ and }}6$are divisible by 3.
So, $\dfrac{{ - 9}}{6} = \dfrac{{ - 3}}{2}$. Therefore,
$ \Rightarrow \dfrac{{{{(0.6)}^0} - {{(0.1)}^{ - 1}}}}{{{{\left( {\dfrac{3}{8}} \right)}^{ - 1}}{{\left( {\dfrac{3}{2}} \right)}^3} + {{\left( {\dfrac{{ - 1}}{3}} \right)}^{ - 1}}}} = \dfrac{{ - 3}}{2}$
Thus option C the correct option.
Note:
The law of exponent ${(a)^{ - 1}} = \dfrac{1}{a}$ is a particular case of ${(a)^{ - m}} = \dfrac{1}{{{a^m}}}$, where $m > 0$. Here we have used $m = 1$. Here, we have converted the decimal number in numerator into fraction because the denominator has numbers in fraction form. Also, it is easy to apply rules of exponent on fraction then on the decimal number.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
The singular of lice is louse A Yes B No class 8 english CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

How many ounces are in 500 mL class 8 maths CBSE

Advantages and disadvantages of science

1 meter is equal to how many feet class 8 maths CBSE

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
