
How do you find the value of $ \csc \left( {\dfrac{{3\pi }}{4}} \right) $ ?
Answer
563.4k+ views
Hint: In order to solve this question ,find $ \sin \left( {\dfrac{{3\pi }}{4}} \right) $ as $ \csc \theta = \dfrac{1}{{\sin \theta }} $ by converting $ \left( {\dfrac{{3\pi }}{4}} \right) $ into some (A+B) and apply $ \sin \left( {A + B} \right) $ formula and find the inverse of it to find the required answer.
Formula:
$ \sin \left( {A - B} \right) = \sin \left( A \right)\cos \left( B \right) - \sin \left( B \right)\cos \left( A \right) $
Complete step-by-step answer:
In trigonometric table ,the value of $ \sin \left( {\dfrac{{3\pi }}{4}} \right) $ is not given ,so to find this we have use some other means to find the required value .We’ll use other trigonometric values given in the trigonometric table .
First ,we’ll ,convert $ \left( {\dfrac{{3\pi }}{4}} \right) $ into some (A-B) form
$ \sin \left( {\dfrac{{3\pi }}{4}} \right) = \sin \left( {\dfrac{\pi }{2} + \dfrac{\pi }{4}} \right) $
Now we will apply formula $ \sin \left( {A + B} \right) = \sin \left( A \right)\cos \left( B \right) + \sin \left( B \right)\cos \left( A \right) $
Where , A is equal to $ \dfrac{\pi }{2} $ and B is equal to $ \dfrac{\pi }{4} $
$ \sin \left( {\dfrac{\pi }{2} + \dfrac{\pi }{4}} \right) = \sin \left( {\dfrac{\pi }{2}} \right)\cos \left( {\dfrac{\pi }{4}} \right) + \sin \left( {\dfrac{\pi }{4}} \right)\cos \left( {\dfrac{\pi }{2}} \right) $ -(1)
From the trigonometric table
$ \sin \left( {\dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }}\, $ ,
$ \sin \left( {\dfrac{\pi }{2}} \right) = 1 $
$ \cos \left( {\dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }}\, $
$ \cos \left( {\dfrac{\pi }{2}} \right) = 0 $
Putting values in equation (1)
$
= 1 \times \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} \times 0 \\
= \dfrac{1}{{\sqrt 2 }} \\
$
Therefore, the value of $ \sin \left( {\dfrac{{3\pi }}{4}} \right) = \dfrac{1}{{\sqrt 2 }} $
Since using identity of trigonometry $ \csc \theta = \dfrac{1}{{\sin \theta }} $ ,here $ \theta = \dfrac{{3\pi }}{4} $
\[
\csc \left( {\dfrac{{3\pi }}{4}} \right) = \dfrac{1}{{\sin \left( {\dfrac{{3\pi }}{4}} \right)}} \\
\csc \left( {\dfrac{{3\pi }}{4}} \right) = \dfrac{1}{{\dfrac{1}{{\sqrt 2 }}}} \\
\csc \left( {\dfrac{{3\pi }}{4}} \right) = \sqrt 2 \\
\]
Hence the value of $ \csc \left( {\dfrac{{3\pi }}{4}} \right) $ is equal to $ \sqrt 2 $ .
So, the correct answer is “ $ \sqrt 2 $ ”.
Note: 1. Periodic Function= A function $ f(x) $ is said to be a periodic function if there exists a real number T > 0 such that $ f(x + T) = f(x) $ for all x.
If T is the smallest positive real number such that $ f(x + T) = f(x) $ for all x, then T is called the fundamental period of $ f(x) $ .
Since $ \sin \,(2n\pi + \theta ) = \sin \theta $ for all values of $ \theta $ and n $ \in $ N.
2. Even Function – A function $ f(x) $ is said to be an even function ,if $ f( - x) = f(x) $ for all x in its domain.
Odd Function – A function $ f(x) $ is said to be an even function ,if $ f( - x) = - f(x) $ for all x in its domain.
We know that $ \sin ( - \theta ) = - \sin \theta .\cos ( - \theta ) = \cos \theta \,and\,\tan ( - \theta ) = - \tan \theta $
Therefore, $ \sin \theta $ and $ \tan \theta $ and their reciprocals, $ \cos ec\theta $ and $ \cot \theta $ are odd functions whereas \[\cos \theta \] and its reciprocal \[\sec \theta \] are even functions.
Formula:
$ \sin \left( {A - B} \right) = \sin \left( A \right)\cos \left( B \right) - \sin \left( B \right)\cos \left( A \right) $
Complete step-by-step answer:
In trigonometric table ,the value of $ \sin \left( {\dfrac{{3\pi }}{4}} \right) $ is not given ,so to find this we have use some other means to find the required value .We’ll use other trigonometric values given in the trigonometric table .
First ,we’ll ,convert $ \left( {\dfrac{{3\pi }}{4}} \right) $ into some (A-B) form
$ \sin \left( {\dfrac{{3\pi }}{4}} \right) = \sin \left( {\dfrac{\pi }{2} + \dfrac{\pi }{4}} \right) $
Now we will apply formula $ \sin \left( {A + B} \right) = \sin \left( A \right)\cos \left( B \right) + \sin \left( B \right)\cos \left( A \right) $
Where , A is equal to $ \dfrac{\pi }{2} $ and B is equal to $ \dfrac{\pi }{4} $
$ \sin \left( {\dfrac{\pi }{2} + \dfrac{\pi }{4}} \right) = \sin \left( {\dfrac{\pi }{2}} \right)\cos \left( {\dfrac{\pi }{4}} \right) + \sin \left( {\dfrac{\pi }{4}} \right)\cos \left( {\dfrac{\pi }{2}} \right) $ -(1)
From the trigonometric table
$ \sin \left( {\dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }}\, $ ,
$ \sin \left( {\dfrac{\pi }{2}} \right) = 1 $
$ \cos \left( {\dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }}\, $
$ \cos \left( {\dfrac{\pi }{2}} \right) = 0 $
Putting values in equation (1)
$
= 1 \times \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} \times 0 \\
= \dfrac{1}{{\sqrt 2 }} \\
$
Therefore, the value of $ \sin \left( {\dfrac{{3\pi }}{4}} \right) = \dfrac{1}{{\sqrt 2 }} $
Since using identity of trigonometry $ \csc \theta = \dfrac{1}{{\sin \theta }} $ ,here $ \theta = \dfrac{{3\pi }}{4} $
\[
\csc \left( {\dfrac{{3\pi }}{4}} \right) = \dfrac{1}{{\sin \left( {\dfrac{{3\pi }}{4}} \right)}} \\
\csc \left( {\dfrac{{3\pi }}{4}} \right) = \dfrac{1}{{\dfrac{1}{{\sqrt 2 }}}} \\
\csc \left( {\dfrac{{3\pi }}{4}} \right) = \sqrt 2 \\
\]
Hence the value of $ \csc \left( {\dfrac{{3\pi }}{4}} \right) $ is equal to $ \sqrt 2 $ .
So, the correct answer is “ $ \sqrt 2 $ ”.
Note: 1. Periodic Function= A function $ f(x) $ is said to be a periodic function if there exists a real number T > 0 such that $ f(x + T) = f(x) $ for all x.
If T is the smallest positive real number such that $ f(x + T) = f(x) $ for all x, then T is called the fundamental period of $ f(x) $ .
Since $ \sin \,(2n\pi + \theta ) = \sin \theta $ for all values of $ \theta $ and n $ \in $ N.
2. Even Function – A function $ f(x) $ is said to be an even function ,if $ f( - x) = f(x) $ for all x in its domain.
Odd Function – A function $ f(x) $ is said to be an even function ,if $ f( - x) = - f(x) $ for all x in its domain.
We know that $ \sin ( - \theta ) = - \sin \theta .\cos ( - \theta ) = \cos \theta \,and\,\tan ( - \theta ) = - \tan \theta $
Therefore, $ \sin \theta $ and $ \tan \theta $ and their reciprocals, $ \cos ec\theta $ and $ \cot \theta $ are odd functions whereas \[\cos \theta \] and its reciprocal \[\sec \theta \] are even functions.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

