
Find the value of $\cos {75^\circ }$.
Answer
572.4k+ views
Hint: In this problem we are asked to find the cosine of some degree. To proceed this problem mainly we have to write the given degree into some form of addition of two values and the students asked to solve the problem by using some trigonometric identities and trigonometric table values. By following these steps we can get the correct value of the given problem.
Formula used: Compound - angle formulae, \[\cos \left( {a + b} \right) = \left( {\cos a} \right)\left( {\cos b} \right) - \left( {\sin a} \right)\left( {\sin b} \right)\]
Complete step-by-step solution:
We need to find the value of $\cos 75$.
We can write $\cos 75$ as $\cos \left( {30 + 45} \right)$. Since $75 = 30 + 45$
The values of $\sin 45,\sin 30,\cos 45$ and$\cos 30$ are commonly known.
Now we use the formula which we mentioned above for $\cos \left( {30 + 45} \right)$,
$\cos \left( {45 + 30} \right) = \left( {\cos 30} \right)\left( {\cos 45} \right) - \left( {\sin 30} \right)\left( {\sin 45} \right) - - - - - \left( 1 \right)$
The values of $\cos 30$ and $\sin 30$ also $\cos 45$ and $\sin 45$ are listed below
$\cos 30 = \dfrac{{\sqrt 3 }}{2}$
$\sin 30 = \dfrac{1}{2}$
$\sin 45 = \cos 45 = \dfrac{{\sqrt 2 }}{2}$
We can write $\dfrac{{\sqrt 2 }}{2} = \dfrac{1}{{\sqrt 2 }}$
So, $\sin 45 = \cos 45 = \dfrac{1}{{\sqrt 2 }}$
Substitute these values in the equation $\left( 1 \right)$ we get,
$\cos \left( {30 + 45} \right) = \dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{{\sqrt 2 }} - \dfrac{1}{2} \times \dfrac{1}{{\sqrt 2 }}$
$\cos \left( {30 + 45} \right) = \dfrac{{\sqrt 3 }}{{2\sqrt 2 }} - \dfrac{1}{{2\sqrt 2 }}$
Taking LCM we get,
$\cos \left( {30 + 45} \right) = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$
Hence $\cos \left( {75} \right) = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$
Additional Information: The cosine of an angle is defined as the sine of the complementary angle. The complementary angle equals the given angle subtracted from a right angle, ${90^\circ }$. For instance, if the angle is ${30^\circ }$, then its complement is ${60^\circ }$. In trigonometry, the law of cosines related the lengths of the sides of a triangle to the cosine of one of its angles.
Note: In this problem we can also find the answer as decimal value. By substituting the cosine and sine degree values as decimal values we get the answers as decimal value. Also there is an alternate solution for this problem.
$\cos \left( {30 + 45} \right) = \dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{{\sqrt 2 }} - \dfrac{1}{2} \times \dfrac{1}{{\sqrt 2 }}$
$ \Rightarrow \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$
$ \Rightarrow \dfrac{{\sqrt 2 \left( {\sqrt 3 - 1} \right)}}{4}$
By substituting the values of $\sqrt 2 $ and $\sqrt 3 $ we get,
$ \Rightarrow \dfrac{{\left\{ {\left( {1.414} \right)\left( {1.732 - 1} \right)} \right\}}}{4}$
Simplifying we get,
$ \Rightarrow \dfrac{{\left( {0.707} \right)\left( {0.732} \right)}}{2}$
Divided the term,
$ \Rightarrow \left( {0.707} \right)\left( {0.366} \right)$
Multiplying the terms we get,
$ \Rightarrow 0.258762$
$\cos \left( {30 + 45} \right) = 0.258762$
So if we substitute the decimal values we get the answer in the form of decimal.
Formula used: Compound - angle formulae, \[\cos \left( {a + b} \right) = \left( {\cos a} \right)\left( {\cos b} \right) - \left( {\sin a} \right)\left( {\sin b} \right)\]
Complete step-by-step solution:
We need to find the value of $\cos 75$.
We can write $\cos 75$ as $\cos \left( {30 + 45} \right)$. Since $75 = 30 + 45$
The values of $\sin 45,\sin 30,\cos 45$ and$\cos 30$ are commonly known.
Now we use the formula which we mentioned above for $\cos \left( {30 + 45} \right)$,
$\cos \left( {45 + 30} \right) = \left( {\cos 30} \right)\left( {\cos 45} \right) - \left( {\sin 30} \right)\left( {\sin 45} \right) - - - - - \left( 1 \right)$
The values of $\cos 30$ and $\sin 30$ also $\cos 45$ and $\sin 45$ are listed below
$\cos 30 = \dfrac{{\sqrt 3 }}{2}$
$\sin 30 = \dfrac{1}{2}$
$\sin 45 = \cos 45 = \dfrac{{\sqrt 2 }}{2}$
We can write $\dfrac{{\sqrt 2 }}{2} = \dfrac{1}{{\sqrt 2 }}$
So, $\sin 45 = \cos 45 = \dfrac{1}{{\sqrt 2 }}$
Substitute these values in the equation $\left( 1 \right)$ we get,
$\cos \left( {30 + 45} \right) = \dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{{\sqrt 2 }} - \dfrac{1}{2} \times \dfrac{1}{{\sqrt 2 }}$
$\cos \left( {30 + 45} \right) = \dfrac{{\sqrt 3 }}{{2\sqrt 2 }} - \dfrac{1}{{2\sqrt 2 }}$
Taking LCM we get,
$\cos \left( {30 + 45} \right) = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$
Hence $\cos \left( {75} \right) = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$
Additional Information: The cosine of an angle is defined as the sine of the complementary angle. The complementary angle equals the given angle subtracted from a right angle, ${90^\circ }$. For instance, if the angle is ${30^\circ }$, then its complement is ${60^\circ }$. In trigonometry, the law of cosines related the lengths of the sides of a triangle to the cosine of one of its angles.
Note: In this problem we can also find the answer as decimal value. By substituting the cosine and sine degree values as decimal values we get the answers as decimal value. Also there is an alternate solution for this problem.
$\cos \left( {30 + 45} \right) = \dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{{\sqrt 2 }} - \dfrac{1}{2} \times \dfrac{1}{{\sqrt 2 }}$
$ \Rightarrow \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$
$ \Rightarrow \dfrac{{\sqrt 2 \left( {\sqrt 3 - 1} \right)}}{4}$
By substituting the values of $\sqrt 2 $ and $\sqrt 3 $ we get,
$ \Rightarrow \dfrac{{\left\{ {\left( {1.414} \right)\left( {1.732 - 1} \right)} \right\}}}{4}$
Simplifying we get,
$ \Rightarrow \dfrac{{\left( {0.707} \right)\left( {0.732} \right)}}{2}$
Divided the term,
$ \Rightarrow \left( {0.707} \right)\left( {0.366} \right)$
Multiplying the terms we get,
$ \Rightarrow 0.258762$
$\cos \left( {30 + 45} \right) = 0.258762$
So if we substitute the decimal values we get the answer in the form of decimal.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

