
Find the value of ${\cos ^{ - 1}}\left( {\cos \dfrac{{5\pi }}{3}} \right) + {\sin ^{ - 1}}\left( {\sin \dfrac{{5\pi }}{3}} \right)$
Answer
585.3k+ views
Hint: To solve this question, we need to know the basic theory related to the Inverse Trigonometric Functions. Here we have two terms ${\cos ^{ - 1}}\left( {\cos \dfrac{{5\pi }}{3}} \right)$ and ${\sin ^{ - 1}}\left( {\sin \dfrac{{5\pi }}{3}} \right)$. So first we find the calculated value of both terms and then we simply add these two to get our result.
Complete step-by-step solution:
First term of the expression:
${\cos ^{ - 1}}\left[ {\cos \left( {\dfrac{{5\pi }}{3}} \right)} \right]$
The above expression can be written as:
${\cos ^{ - 1}}\left\{ {\cos \left( {2\pi - \dfrac{\pi }{3}} \right)} \right\}$
We know that Cos($2\pi - \theta $)=Cos$\theta $
So, we can write
${\cos ^{ - 1}}\left\{ {\cos \left( {2\pi - \dfrac{\pi }{3}} \right)} \right\}$=${\cos ^{ - 1}}\left\{ {\cos \dfrac{\pi }{3}} \right\}$.
Now, we know that
${\cos ^{ - 1}}\left( {\cos x} \right) = x$ , for $0 \leqslant x \leqslant \pi $ .
So, we have:
${\cos ^{ - 1}}\left\{ {\cos \dfrac{\pi }{3}} \right\}$= $\dfrac{\pi }{3}$
Second term of the expression:
${\sin ^{ - 1}}\left( {\sin \dfrac{{5\pi }}{3}} \right)$
The above expression can be written as:
\[{\sin ^{ - 1}}\left\{ {\sin \left( {2\pi - \dfrac{\pi }{3}} \right)} \right\}\]
We know that Sin($2\pi - \theta $)= -Sin$\theta $
So, we can write
\[{\sin ^{ - 1}}\left\{ {\sin \left( {2\pi - \dfrac{\pi }{3}} \right)} \right\}\]= \[{\sin ^{ - 1}}\left( { - \sin \dfrac{\pi }{3}} \right)\]
We know that $\operatorname{Sin} ( - \theta ) = - \operatorname{Sin} \theta $
So , we have:
\[{\sin ^{ - 1}}\left( { - \sin \dfrac{\pi }{3}} \right)\]= \[{\sin ^{ - 1}}\left( {\sin ( - \dfrac{\pi }{3})} \right)\]
Now, we know that
\[{\operatorname{Sin} ^{ - 1}}\left( {\sin x} \right) = x\] , for $\dfrac{{ - \pi }}{2} \leqslant x \leqslant \dfrac{\pi }{2}$
So, we have:
\[{\sin ^{ - 1}}\left({\sin ( - \dfrac{\pi }{3}} \right)\] = $ - \dfrac{\pi }{3}$
Now, as we need to calculated-
${\cos ^{ - 1}}\left( {\cos \dfrac{{5\pi }}{3}} \right) + {\sin ^{ - 1}}\left( {\sin \dfrac{{5\pi }}{3}} \right)$
Put the value of both term, which we already calculated-
= $\dfrac{\pi }{3} - \dfrac{\pi }{3}$
= 0
Therefore, the value of ${\cos ^{ - 1}}\left( {\cos \dfrac{{5\pi }}{3}} \right) + {\sin ^{ - 1}}\left( {\sin \dfrac{{5\pi }}{3}} \right)$ is 0.
Note: The important basic step is to split the given angle in terms of $2\pi \pm \theta $. So, we should remember the formula related to trigonometric function of the allied angle.
Sin ($2\pi - \theta $)= -Sin$\theta $
Sin ($2\pi + \theta $)= Sin$\theta $.
And also, we need to remember some formula related to this question.
${\cos ^{ - 1}}\left( {\cos \theta } \right) = \theta $ where, $0 \leqslant \theta \leqslant \pi $
${\sin ^{ - 1}}\left( {\sin \theta } \right) = \theta $ where, $ - \dfrac{\pi }{2} \leqslant \theta \leqslant \dfrac{\pi }{2}$
Complete step-by-step solution:
First term of the expression:
${\cos ^{ - 1}}\left[ {\cos \left( {\dfrac{{5\pi }}{3}} \right)} \right]$
The above expression can be written as:
${\cos ^{ - 1}}\left\{ {\cos \left( {2\pi - \dfrac{\pi }{3}} \right)} \right\}$
We know that Cos($2\pi - \theta $)=Cos$\theta $
So, we can write
${\cos ^{ - 1}}\left\{ {\cos \left( {2\pi - \dfrac{\pi }{3}} \right)} \right\}$=${\cos ^{ - 1}}\left\{ {\cos \dfrac{\pi }{3}} \right\}$.
Now, we know that
${\cos ^{ - 1}}\left( {\cos x} \right) = x$ , for $0 \leqslant x \leqslant \pi $ .
So, we have:
${\cos ^{ - 1}}\left\{ {\cos \dfrac{\pi }{3}} \right\}$= $\dfrac{\pi }{3}$
Second term of the expression:
${\sin ^{ - 1}}\left( {\sin \dfrac{{5\pi }}{3}} \right)$
The above expression can be written as:
\[{\sin ^{ - 1}}\left\{ {\sin \left( {2\pi - \dfrac{\pi }{3}} \right)} \right\}\]
We know that Sin($2\pi - \theta $)= -Sin$\theta $
So, we can write
\[{\sin ^{ - 1}}\left\{ {\sin \left( {2\pi - \dfrac{\pi }{3}} \right)} \right\}\]= \[{\sin ^{ - 1}}\left( { - \sin \dfrac{\pi }{3}} \right)\]
We know that $\operatorname{Sin} ( - \theta ) = - \operatorname{Sin} \theta $
So , we have:
\[{\sin ^{ - 1}}\left( { - \sin \dfrac{\pi }{3}} \right)\]= \[{\sin ^{ - 1}}\left( {\sin ( - \dfrac{\pi }{3})} \right)\]
Now, we know that
\[{\operatorname{Sin} ^{ - 1}}\left( {\sin x} \right) = x\] , for $\dfrac{{ - \pi }}{2} \leqslant x \leqslant \dfrac{\pi }{2}$
So, we have:
\[{\sin ^{ - 1}}\left({\sin ( - \dfrac{\pi }{3}} \right)\] = $ - \dfrac{\pi }{3}$
Now, as we need to calculated-
${\cos ^{ - 1}}\left( {\cos \dfrac{{5\pi }}{3}} \right) + {\sin ^{ - 1}}\left( {\sin \dfrac{{5\pi }}{3}} \right)$
Put the value of both term, which we already calculated-
= $\dfrac{\pi }{3} - \dfrac{\pi }{3}$
= 0
Therefore, the value of ${\cos ^{ - 1}}\left( {\cos \dfrac{{5\pi }}{3}} \right) + {\sin ^{ - 1}}\left( {\sin \dfrac{{5\pi }}{3}} \right)$ is 0.
Note: The important basic step is to split the given angle in terms of $2\pi \pm \theta $. So, we should remember the formula related to trigonometric function of the allied angle.
Sin ($2\pi - \theta $)= -Sin$\theta $
Sin ($2\pi + \theta $)= Sin$\theta $.
And also, we need to remember some formula related to this question.
${\cos ^{ - 1}}\left( {\cos \theta } \right) = \theta $ where, $0 \leqslant \theta \leqslant \pi $
${\sin ^{ - 1}}\left( {\sin \theta } \right) = \theta $ where, $ - \dfrac{\pi }{2} \leqslant \theta \leqslant \dfrac{\pi }{2}$
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

