
Find the value of \[C\left( {n,r} \right) + 2C\left( {n,r - 1} \right) + C\left( {n,r - 2} \right)\]:
Answer
588.3k+ views
Hint: Here, we will use Pascal’s formula twice which states for any positive natural numbers \[p\] and \[q\] with \[\]:
\[{}^p{C_q} + {}^p{C_{q - 1}} = {}^{p + 1}{C_q}\] where \[{}^p{C_q} = \dfrac{{p!}}{{q!\left( {p - q} \right)!}}\], \[{}^p{C_{q - 1}} = \dfrac{{p!}}{{\left( {q - 1} \right)!\left( {p - \left( {q - 1} \right)} \right)!}}\] and \[{}^{p + 1}{C_q} = \dfrac{{\left( {p + 1} \right)!}}{{\left( q \right)!\left( {p + 1 - q} \right)!}}\].
Complete step-by-step answer:
Step 1: By writing the expression \[C\left( {n,r} \right) + 2C\left( {n,r - 1} \right) + C\left( {n,r - 2} \right)\] in the form of \[{}^p{C_q}\] we will get:
\[C\left( {n,r} \right) + 2C\left( {n,r - 1} \right) + C\left( {n,r - 2} \right) = {}^n{C_r} + 2{}^n{C_{r - 1}} + {}^n{C_{r - 2}}\]….…… (1)
Step 2: Now, by simplifying the expression (1) and breaking the term \[2{}^n{C_{r - 1}}\] into two parts as \[2{}^n{C_{r - 1}} = {}^n{C_{r - 1}} + {}^n{C_{r - 1}}\] we get:
\[\]………………………. (2)
By solving the above expression (2) in two separate steps by using Pascal’s rule which states that for whole numbers \[p\]and\[q\] where \[p \geqslant q\]:
\[\]
Step 3: Using Pascal’s rule for the first two terms in the expression (2) by putting \[p = n\]and \[\] in \[{}^p{C_q} + {}^p{C_{q - 1}} = {}^{p + 1}{C_q}\] we get:
\[\] ………………….. (3)
Similarly, by using Pascal’s rule for the last two terms in the expression (2) by putting \[p = n\]and \[q = r - 1\] in \[{}^p{C_q} + {}^p{C_{q - 1}} = {}^{p + 1}{C_q}\] we get:
\[ \Rightarrow {}^n{C_{r - 1}} + {}^n{C_{r - 2}} = {}^{n + 1}{C_{r - 1}}{\text{ }}\left( {\because {}^p{C_q} + {}^p{C_{q - 1}} = {}^{p + 1}{C_q}} \right)\]…………………. (4)
So, the final term \[{}^n{C_r} + {}^n{C_{r - 1}} + {}^n{C_{r - 1}} + {}^n{C_{r - 2}}\] will be written as the addition of expression (3) and (4):
\[ \Rightarrow {}^n{C_r} + {}^n{C_{r - 1}} + {}^n{C_{r - 1}} + {}^n{C_{r - 2}} = {}^{n + 1}{C_r} + {}^{n + 1}{C_{r - 1}}\]
Therefore, from equation (2) we get
\[ \Rightarrow {}^n{C_r} + 2{}^n{C_{r - 1}} + {}^n{C_{r - 2}}{\text{ }} = {}^{n + 1}{C_r} + {}^{n + 1}{C_{r - 1}}\] …………………. (5)
Step 4: Now, in the above expression (5), by applying the same pascal rule by putting \[p = n + 1\]and \[q = r\] in \[{}^p{C_q} + {}^p{C_{q - 1}} = {}^{p + 1}{C_q}\] we get:
\[ \Rightarrow {}^{n + 1}{C_r} + {}^{n + 1}{C_{r - 1}} = {}^{(n + 1) + 1}{C_r} = {}^{n + 2}{C_r}\left( {\because {}^p{C_q} + {}^p{C_{q - 1}} = {}^{p + 1}{C_q}} \right)\]
We can also write the above answer \[{}^{n + 2}{C_r}\] as below:
\[C\left( {n + 2,r} \right)\]
Therefore, \[C\left( {n,r} \right) + 2C\left( {n,r - 1} \right) + C\left( {n,r - 2} \right) = C\left( {n + 2,r} \right)\].
Note: Students can also try to go for expanding and solving the above term \[C\left( {n,r} \right) + 2C\left( {n,r - 1} \right) + C\left( {n,r - 2} \right)\]by expanding the terms \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\], \[2{}^n{C_{r - 1}} = 2\left( {\dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - \left( {r - 1} \right)} \right)!}}} \right)\]and \[{}^n{C_{r - 2}} = \dfrac{{n!}}{{\left( {r - 2} \right)!\left( {n - \left( {r - 2} \right)} \right)!}}\]:
\[{}^n{C_r} + 2{}^n{C_{r - 1}} + {}^n{C_{r - 2}} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}} + 2\left( {\dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r + 1} \right)!}}} \right) + \dfrac{{n!}}{{\left( {r - 2} \right)!\left( {n - r + 2} \right)!}}\]……………… (1)
By expanding the term \[2\left( {\dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r + 1} \right)!}}} \right) = \dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r + 1} \right)!}} + \dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r + 1} \right)!}}\]in the above equation (1):
\[ \Rightarrow {}^n{C_r} + 2{}^n{C_{r - 1}} + {}^n{C_{r - 2}} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}} + \dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r + 1} \right)!}} + \dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r + 1} \right)!}} + \dfrac{{n!}}{{\left( {r - 2} \right)!\left( {n - r + 2} \right)!}}\]
Now we will consider the first two and last two terms:
\[ \Rightarrow {}^n{C_r} + 2{}^n{C_{r - 1}} + {}^n{C_{r - 2}} = \left( {\dfrac{{n!}}{{r!\left( {n - r} \right)!}} + \dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r + 1} \right)!}}} \right) + \left( {\dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r + 1} \right)!}} + \dfrac{{n!}}{{\left( {r - 2} \right)!\left( {n - r + 2} \right)!}}} \right)\]
For the left and right bracket, by taking \[\dfrac{{n!}}{{(r - 1)\left( {n - r} \right)!}}\], \[\dfrac{{n!}}{{(r - 1)\left( {n - r + 1} \right)!}}\] common respectively we have:
\[ \Rightarrow {}^n{C_r} + 2{}^n{C_{r - 1}} + {}^n{C_{r - 2}} = \dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r} \right)!}}\left( {\dfrac{1}{r} + \dfrac{1}{{n - r + 1}}} \right) + \dfrac{{n!}}{{\left( {r - 2} \right)!\left( {n - r + 1} \right)!}}\left( {\dfrac{1}{{r - 1}} + \dfrac{1}{{n - r + 2}}} \right)\] …… (2)
We will solve the above expression (2) in two separate parts:
For the first part i.e. \[\dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r} \right)!}}\left( {\dfrac{1}{r} + \dfrac{1}{{n - r + 1}}} \right)\], by multiplying and dividing the two fractions inside the bracket using common factors we ensure that denominators are the same:
\[\dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r} \right)!}}\left( {\dfrac{1}{r} + \dfrac{1}{{n - r + 1}}} \right) = \dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r} \right)!}}\left( {\dfrac{{1 \cdot \left( {n - r + 1} \right)}}{{r \cdot \left( {n - r + 1} \right)}} + \dfrac{{1 \cdot r}}{{r \cdot \left( {n - r + 1} \right)}}} \right)\]… (3)
Now, in the above equation (3) by multiplying the factors and adding the two fractions we get:
\[ \Rightarrow \dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r} \right)!}}\left( {\dfrac{{1 \cdot \left( {n - r + 1} \right)}}{{r \cdot \left( {n - r + 1} \right)}} + \dfrac{{1 \cdot r}}{{r \cdot \left( {n - r + 1} \right)}}} \right) = \dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r} \right)!}}\left( {\dfrac{{n - r + 1 + r}}{{r \cdot \left( {n - r + 1} \right)}}} \right)\]
\[ \Rightarrow \dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r} \right)!}}\left( {\dfrac{1}{r} + \dfrac{1}{{n - r + 1}}} \right) = \dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r} \right)!}}\left( {\dfrac{{n + 1}}{{r \cdot \left( {n - r + 1} \right)}}} \right)\]…. (4)
For the last two parts of equation (2) i.e. \[\dfrac{{n!}}{{\left( {r - 2} \right)!\left( {n - r + 1} \right)!}}\left( {\dfrac{1}{{r - 1}} + \dfrac{1}{{n - r + 2}}} \right)\], by multiplying and dividing the two fractions inside the bracket using common factors, we ensure that denominators are the same:
\[\dfrac{{n!}}{{\left( {r - 2} \right)!\left( {n - r + 1} \right)!}}\left( {\dfrac{1}{{r - 1}} + \dfrac{1}{{n - r + 2}}} \right) = \dfrac{{n!}}{{\left( {r - 2} \right)!\left( {n - r + 1} \right)!}}\left( {\dfrac{{1 \cdot \left( {n - r + 2} \right)}}{{\left( {r - 1} \right) \cdot \left( {n - r + 2} \right)}} + \dfrac{{1 \cdot \left( {r - 1} \right)}}{{\left( {r - 1} \right) \cdot \left( {n - r + 2} \right)}}} \right)\]….. (5)
Now, in the above equation (5) by multiplying the factors and adding the two fractions we get:
\[\dfrac{{n!}}{{\left( {r - 2} \right)!\left( {n - r + 1} \right)!}}\left( {\dfrac{{1 \cdot \left( {n - r + 2} \right)}}{{\left( {r - 1} \right) \cdot \left( {n - r + 2} \right)}} + \dfrac{{1 \cdot \left( {r - 1} \right)}}{{\left( {r - 1} \right) \cdot \left( {n - r + 2} \right)}}} \right) = \dfrac{{n!}}{{\left( {r - 2} \right)!\left( {n - r + 1} \right)!}}\left( {\dfrac{{n - r + 2 + r - 1}}{{\left( {r - 1} \right) \cdot \left( {n - r + 2} \right)}}} \right)\] \[\] … (6)
Now, for equation (4), we can write \[n! \times \left( {n + 1} \right) = \left( {n + 1} \right)!\], \[r \times \left( {r - 1} \right)! = r!\] and \[\left( {n - r} \right)! \times \left( {n - r + 1} \right) = \left( {n - r + 1} \right)!\]. Substituting these values in equation (4):
\[\] …………………… (7)
For equation (6), we can write \[n! \times \left( {n + 1} \right) = \left( {n + 1} \right)!\], \[\left( {r - 1} \right) \times \left( {r - 2} \right)! = \left( {r - 1} \right)!\] and \[\left( {n - r + 1} \right)! \times \left( {n - r + 2} \right) = \left( {n - r + 2} \right)!\]. Substituting these values in the above equation (6):
\[ \Rightarrow \dfrac{{n!}}{{\left( {r - 2} \right)!\left( {n - r + 1} \right)!}}\left( {\dfrac{1}{{r - 1}} + \dfrac{1}{{n - r + 2}}} \right) = \dfrac{{\left( {n + 1} \right)!}}{{\left( {r - 1} \right)!\left( {n - r + 2} \right)!}}\] ………………….. (8)
Finally combining both equations (7) and (8) and comparing with equation (2):
\[\]
Taking \[\dfrac{{\left( {n + 1} \right)!}}{{(r - 1)\left( {n + 1 - r} \right)!}}\] common and solving for the final result:
\[ \Rightarrow {}^n{C_r} + 2{}^n{C_{r - 1}} + {}^n{C_{r - 2}} = \dfrac{{\left( {n + 1} \right)!}}{{\left( {r - 1} \right)\left( {n + 1 - r} \right)!}}\left( {\dfrac{1}{r} + \dfrac{1}{{n - r + 2}}} \right)\]
Now by repeating the same steps as in equation (5) and (6), we will get:
\[ \Rightarrow \dfrac{{\left( {n + 1} \right)!}}{{(r - 1)\left( {n + 1 - r} \right)!}}\left( {\dfrac{{n + 2}}{{r\left( {n - r + 2} \right)}}} \right)\] …………….. (9)
Now, for the above expression (9), we can write \[\left( {n + 1} \right)! \times \left( {n + 2} \right) = \left( {n + 2} \right)!\], \[r \times \left( {r - 1} \right)! = r!\], and \[\left( {n - r + 1} \right)! \times \left( {n - r + 2} \right) = \left( {n - r + 2} \right)!\], substituting these values in the above equation (9):
By comparing the above term \[\dfrac{{\left( {n + 1} \right)!}}{{(r - 1)\left( {n + 1 - r} \right)!}}\left( {\dfrac{{n + 2}}{{r\left( {n - r + 2} \right)}}} \right)\] in the form of \[{}^n{C_r}\], the final result will become \[{}^{n + 2}{C_r}\] or \[C\left( {n + 2,r} \right)\]
So, better to use the pascal method for avoiding the complexity level to calculate the correct answer.
\[{}^p{C_q} + {}^p{C_{q - 1}} = {}^{p + 1}{C_q}\] where \[{}^p{C_q} = \dfrac{{p!}}{{q!\left( {p - q} \right)!}}\], \[{}^p{C_{q - 1}} = \dfrac{{p!}}{{\left( {q - 1} \right)!\left( {p - \left( {q - 1} \right)} \right)!}}\] and \[{}^{p + 1}{C_q} = \dfrac{{\left( {p + 1} \right)!}}{{\left( q \right)!\left( {p + 1 - q} \right)!}}\].
Complete step-by-step answer:
Step 1: By writing the expression \[C\left( {n,r} \right) + 2C\left( {n,r - 1} \right) + C\left( {n,r - 2} \right)\] in the form of \[{}^p{C_q}\] we will get:
\[C\left( {n,r} \right) + 2C\left( {n,r - 1} \right) + C\left( {n,r - 2} \right) = {}^n{C_r} + 2{}^n{C_{r - 1}} + {}^n{C_{r - 2}}\]….…… (1)
Step 2: Now, by simplifying the expression (1) and breaking the term \[2{}^n{C_{r - 1}}\] into two parts as \[2{}^n{C_{r - 1}} = {}^n{C_{r - 1}} + {}^n{C_{r - 1}}\] we get:
\[\]………………………. (2)
By solving the above expression (2) in two separate steps by using Pascal’s rule which states that for whole numbers \[p\]and\[q\] where \[p \geqslant q\]:
\[\]
Step 3: Using Pascal’s rule for the first two terms in the expression (2) by putting \[p = n\]and \[\] in \[{}^p{C_q} + {}^p{C_{q - 1}} = {}^{p + 1}{C_q}\] we get:
\[\] ………………….. (3)
Similarly, by using Pascal’s rule for the last two terms in the expression (2) by putting \[p = n\]and \[q = r - 1\] in \[{}^p{C_q} + {}^p{C_{q - 1}} = {}^{p + 1}{C_q}\] we get:
\[ \Rightarrow {}^n{C_{r - 1}} + {}^n{C_{r - 2}} = {}^{n + 1}{C_{r - 1}}{\text{ }}\left( {\because {}^p{C_q} + {}^p{C_{q - 1}} = {}^{p + 1}{C_q}} \right)\]…………………. (4)
So, the final term \[{}^n{C_r} + {}^n{C_{r - 1}} + {}^n{C_{r - 1}} + {}^n{C_{r - 2}}\] will be written as the addition of expression (3) and (4):
\[ \Rightarrow {}^n{C_r} + {}^n{C_{r - 1}} + {}^n{C_{r - 1}} + {}^n{C_{r - 2}} = {}^{n + 1}{C_r} + {}^{n + 1}{C_{r - 1}}\]
Therefore, from equation (2) we get
\[ \Rightarrow {}^n{C_r} + 2{}^n{C_{r - 1}} + {}^n{C_{r - 2}}{\text{ }} = {}^{n + 1}{C_r} + {}^{n + 1}{C_{r - 1}}\] …………………. (5)
Step 4: Now, in the above expression (5), by applying the same pascal rule by putting \[p = n + 1\]and \[q = r\] in \[{}^p{C_q} + {}^p{C_{q - 1}} = {}^{p + 1}{C_q}\] we get:
\[ \Rightarrow {}^{n + 1}{C_r} + {}^{n + 1}{C_{r - 1}} = {}^{(n + 1) + 1}{C_r} = {}^{n + 2}{C_r}\left( {\because {}^p{C_q} + {}^p{C_{q - 1}} = {}^{p + 1}{C_q}} \right)\]
We can also write the above answer \[{}^{n + 2}{C_r}\] as below:
\[C\left( {n + 2,r} \right)\]
Therefore, \[C\left( {n,r} \right) + 2C\left( {n,r - 1} \right) + C\left( {n,r - 2} \right) = C\left( {n + 2,r} \right)\].
Note: Students can also try to go for expanding and solving the above term \[C\left( {n,r} \right) + 2C\left( {n,r - 1} \right) + C\left( {n,r - 2} \right)\]by expanding the terms \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\], \[2{}^n{C_{r - 1}} = 2\left( {\dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - \left( {r - 1} \right)} \right)!}}} \right)\]and \[{}^n{C_{r - 2}} = \dfrac{{n!}}{{\left( {r - 2} \right)!\left( {n - \left( {r - 2} \right)} \right)!}}\]:
\[{}^n{C_r} + 2{}^n{C_{r - 1}} + {}^n{C_{r - 2}} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}} + 2\left( {\dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r + 1} \right)!}}} \right) + \dfrac{{n!}}{{\left( {r - 2} \right)!\left( {n - r + 2} \right)!}}\]……………… (1)
By expanding the term \[2\left( {\dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r + 1} \right)!}}} \right) = \dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r + 1} \right)!}} + \dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r + 1} \right)!}}\]in the above equation (1):
\[ \Rightarrow {}^n{C_r} + 2{}^n{C_{r - 1}} + {}^n{C_{r - 2}} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}} + \dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r + 1} \right)!}} + \dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r + 1} \right)!}} + \dfrac{{n!}}{{\left( {r - 2} \right)!\left( {n - r + 2} \right)!}}\]
Now we will consider the first two and last two terms:
\[ \Rightarrow {}^n{C_r} + 2{}^n{C_{r - 1}} + {}^n{C_{r - 2}} = \left( {\dfrac{{n!}}{{r!\left( {n - r} \right)!}} + \dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r + 1} \right)!}}} \right) + \left( {\dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r + 1} \right)!}} + \dfrac{{n!}}{{\left( {r - 2} \right)!\left( {n - r + 2} \right)!}}} \right)\]
For the left and right bracket, by taking \[\dfrac{{n!}}{{(r - 1)\left( {n - r} \right)!}}\], \[\dfrac{{n!}}{{(r - 1)\left( {n - r + 1} \right)!}}\] common respectively we have:
\[ \Rightarrow {}^n{C_r} + 2{}^n{C_{r - 1}} + {}^n{C_{r - 2}} = \dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r} \right)!}}\left( {\dfrac{1}{r} + \dfrac{1}{{n - r + 1}}} \right) + \dfrac{{n!}}{{\left( {r - 2} \right)!\left( {n - r + 1} \right)!}}\left( {\dfrac{1}{{r - 1}} + \dfrac{1}{{n - r + 2}}} \right)\] …… (2)
We will solve the above expression (2) in two separate parts:
For the first part i.e. \[\dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r} \right)!}}\left( {\dfrac{1}{r} + \dfrac{1}{{n - r + 1}}} \right)\], by multiplying and dividing the two fractions inside the bracket using common factors we ensure that denominators are the same:
\[\dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r} \right)!}}\left( {\dfrac{1}{r} + \dfrac{1}{{n - r + 1}}} \right) = \dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r} \right)!}}\left( {\dfrac{{1 \cdot \left( {n - r + 1} \right)}}{{r \cdot \left( {n - r + 1} \right)}} + \dfrac{{1 \cdot r}}{{r \cdot \left( {n - r + 1} \right)}}} \right)\]… (3)
Now, in the above equation (3) by multiplying the factors and adding the two fractions we get:
\[ \Rightarrow \dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r} \right)!}}\left( {\dfrac{{1 \cdot \left( {n - r + 1} \right)}}{{r \cdot \left( {n - r + 1} \right)}} + \dfrac{{1 \cdot r}}{{r \cdot \left( {n - r + 1} \right)}}} \right) = \dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r} \right)!}}\left( {\dfrac{{n - r + 1 + r}}{{r \cdot \left( {n - r + 1} \right)}}} \right)\]
\[ \Rightarrow \dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r} \right)!}}\left( {\dfrac{1}{r} + \dfrac{1}{{n - r + 1}}} \right) = \dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r} \right)!}}\left( {\dfrac{{n + 1}}{{r \cdot \left( {n - r + 1} \right)}}} \right)\]…. (4)
For the last two parts of equation (2) i.e. \[\dfrac{{n!}}{{\left( {r - 2} \right)!\left( {n - r + 1} \right)!}}\left( {\dfrac{1}{{r - 1}} + \dfrac{1}{{n - r + 2}}} \right)\], by multiplying and dividing the two fractions inside the bracket using common factors, we ensure that denominators are the same:
\[\dfrac{{n!}}{{\left( {r - 2} \right)!\left( {n - r + 1} \right)!}}\left( {\dfrac{1}{{r - 1}} + \dfrac{1}{{n - r + 2}}} \right) = \dfrac{{n!}}{{\left( {r - 2} \right)!\left( {n - r + 1} \right)!}}\left( {\dfrac{{1 \cdot \left( {n - r + 2} \right)}}{{\left( {r - 1} \right) \cdot \left( {n - r + 2} \right)}} + \dfrac{{1 \cdot \left( {r - 1} \right)}}{{\left( {r - 1} \right) \cdot \left( {n - r + 2} \right)}}} \right)\]….. (5)
Now, in the above equation (5) by multiplying the factors and adding the two fractions we get:
\[\dfrac{{n!}}{{\left( {r - 2} \right)!\left( {n - r + 1} \right)!}}\left( {\dfrac{{1 \cdot \left( {n - r + 2} \right)}}{{\left( {r - 1} \right) \cdot \left( {n - r + 2} \right)}} + \dfrac{{1 \cdot \left( {r - 1} \right)}}{{\left( {r - 1} \right) \cdot \left( {n - r + 2} \right)}}} \right) = \dfrac{{n!}}{{\left( {r - 2} \right)!\left( {n - r + 1} \right)!}}\left( {\dfrac{{n - r + 2 + r - 1}}{{\left( {r - 1} \right) \cdot \left( {n - r + 2} \right)}}} \right)\] \[\] … (6)
Now, for equation (4), we can write \[n! \times \left( {n + 1} \right) = \left( {n + 1} \right)!\], \[r \times \left( {r - 1} \right)! = r!\] and \[\left( {n - r} \right)! \times \left( {n - r + 1} \right) = \left( {n - r + 1} \right)!\]. Substituting these values in equation (4):
\[\] …………………… (7)
For equation (6), we can write \[n! \times \left( {n + 1} \right) = \left( {n + 1} \right)!\], \[\left( {r - 1} \right) \times \left( {r - 2} \right)! = \left( {r - 1} \right)!\] and \[\left( {n - r + 1} \right)! \times \left( {n - r + 2} \right) = \left( {n - r + 2} \right)!\]. Substituting these values in the above equation (6):
\[ \Rightarrow \dfrac{{n!}}{{\left( {r - 2} \right)!\left( {n - r + 1} \right)!}}\left( {\dfrac{1}{{r - 1}} + \dfrac{1}{{n - r + 2}}} \right) = \dfrac{{\left( {n + 1} \right)!}}{{\left( {r - 1} \right)!\left( {n - r + 2} \right)!}}\] ………………….. (8)
Finally combining both equations (7) and (8) and comparing with equation (2):
\[\]
Taking \[\dfrac{{\left( {n + 1} \right)!}}{{(r - 1)\left( {n + 1 - r} \right)!}}\] common and solving for the final result:
\[ \Rightarrow {}^n{C_r} + 2{}^n{C_{r - 1}} + {}^n{C_{r - 2}} = \dfrac{{\left( {n + 1} \right)!}}{{\left( {r - 1} \right)\left( {n + 1 - r} \right)!}}\left( {\dfrac{1}{r} + \dfrac{1}{{n - r + 2}}} \right)\]
Now by repeating the same steps as in equation (5) and (6), we will get:
\[ \Rightarrow \dfrac{{\left( {n + 1} \right)!}}{{(r - 1)\left( {n + 1 - r} \right)!}}\left( {\dfrac{{n + 2}}{{r\left( {n - r + 2} \right)}}} \right)\] …………….. (9)
Now, for the above expression (9), we can write \[\left( {n + 1} \right)! \times \left( {n + 2} \right) = \left( {n + 2} \right)!\], \[r \times \left( {r - 1} \right)! = r!\], and \[\left( {n - r + 1} \right)! \times \left( {n - r + 2} \right) = \left( {n - r + 2} \right)!\], substituting these values in the above equation (9):
By comparing the above term \[\dfrac{{\left( {n + 1} \right)!}}{{(r - 1)\left( {n + 1 - r} \right)!}}\left( {\dfrac{{n + 2}}{{r\left( {n - r + 2} \right)}}} \right)\] in the form of \[{}^n{C_r}\], the final result will become \[{}^{n + 2}{C_r}\] or \[C\left( {n + 2,r} \right)\]
So, better to use the pascal method for avoiding the complexity level to calculate the correct answer.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

