
Find the value of $\alpha $ if \[A=\left[ \begin{matrix}
\begin{matrix}
2 \\
1 \\
\end{matrix} & \begin{matrix}
3 \\
-2 \\
\end{matrix} \\
\end{matrix} \right]\] and ${{A}^{-1}}=\alpha A$ .
A. 7
B. -7
C. $\dfrac{1}{7}$
D. $-\dfrac{1}{7}$
Answer
569.4k+ views
Hint: To find the value of $\alpha $ in ${{A}^{-1}}=\alpha A$ , we will first use the formula ${{A}^{-1}}=\dfrac{adj(A)}{\left| A \right|}$ . After finding $adj(A)$ and $\left| A \right|$ , we will substitute these in the previous formula. After few simplifications and rearrangement, this equation will be of the form ${{A}^{-1}}=\alpha A$ . Hence by comparing, we get the value of $\alpha $ .
Complete step by step answer:
It is given that \[A=\left[ \begin{matrix}
\begin{matrix}
2 \\
1 \\
\end{matrix} & \begin{matrix}
3 \\
-2 \\
\end{matrix} \\
\end{matrix} \right]\] and ${{A}^{-1}}=\alpha A$ . We need to find the value of $\alpha $ .
Let us consider ${{A}^{-1}}=\alpha A$ .
We know that ${{A}^{-1}}=\dfrac{adj(A)}{\left| A \right|}...(i)$ .
Let us first find $adj(A)$ . Consider a $2\times 2$ matrix as shown below:
\[A=\left[ \begin{matrix}
\begin{matrix}
{{a}_{11}} \\
{{a}_{21}} \\
\end{matrix} & \begin{matrix}
{{a}_{12}} \\
{{a}_{22}} \\
\end{matrix} \\
\end{matrix} \right]\]
To find the adjoint of a $2\times 2$ matrix, we should interchange ${{a}_{11}}\text{ and }{{a}_{21}}$ while changing the signs of ${{a}_{12}}\text{ and }{{a}_{21}}$ . Changing signs means + becomes – and – becomes +.
Hence, \[adj(A)=\left[ \begin{matrix}
\begin{matrix}
{{a}_{22}} \\
-{{a}_{21}} \\
\end{matrix} & \begin{matrix}
-{{a}_{12}} \\
{{a}_{12}} \\
\end{matrix} \\
\end{matrix} \right]\] .
Hence, we can find the adjoint of \[A=\left[ \begin{matrix}
\begin{matrix}
2 \\
1 \\
\end{matrix} & \begin{matrix}
3 \\
-2 \\
\end{matrix} \\
\end{matrix} \right]\] and is shown below.
$adj(A)=\left[ \begin{matrix}
\begin{matrix}
-2 \\
-1 \\
\end{matrix} & \begin{matrix}
-3 \\
2 \\
\end{matrix} \\
\end{matrix} \right]...(ii)$
Now, let us find the determinant of A.
Let us consider the determinant of matrix \[A=\left[ \begin{matrix}
\begin{matrix}
{{a}_{11}} \\
{{a}_{21}} \\
\end{matrix} & \begin{matrix}
{{a}_{12}} \\
{{a}_{22}} \\
\end{matrix} \\
\end{matrix} \right]\]
\[\left| A \right|=\left| \begin{matrix}
\begin{matrix}
{{a}_{11}} \\
{{a}_{21}} \\
\end{matrix} & \begin{matrix}
{{a}_{12}} \\
{{a}_{22}} \\
\end{matrix} \\
\end{matrix} \right|={{a}_{11}}{{a}_{22}}-{{a}_{12}}{{a}_{21}}\]
Now let us find the determinant of the matrix \[A=\left[ \begin{matrix}
\begin{matrix}
2 \\
1 \\
\end{matrix} & \begin{matrix}
3 \\
-2 \\
\end{matrix} \\
\end{matrix} \right]\] .
\[\left| A \right|=\left| \begin{matrix}
\begin{matrix}
2 \\
1 \\
\end{matrix} & \begin{matrix}
3 \\
-2 \\
\end{matrix} \\
\end{matrix} \right|=\left( 2\times -2 \right)-\left( 3\times 1 \right)\]
This can be solved to give
\[\left| A \right|=-4-3=-7...(iii)\]
Now let us substitute (ii) and (iii) in (i). We will get
${{A}^{-1}}=-\dfrac{1}{7}\left[ \begin{matrix}
\begin{matrix}
-2 \\
-1 \\
\end{matrix} & \begin{matrix}
-3 \\
2 \\
\end{matrix} \\
\end{matrix} \right]$
Let us take ‘-‘ common from the matrix to outside. Then we get
\[{{A}^{-1}}=\dfrac{1}{7}\left[ \begin{matrix}
\begin{matrix}
2 \\
1 \\
\end{matrix} & \begin{matrix}
3 \\
-2 \\
\end{matrix} \\
\end{matrix} \right]\]
Now, this is of the form
\[{{A}^{-1}}=\dfrac{1}{7}A\]
We can now compare this with ${{A}^{-1}}=\alpha A$ .
Hence, we get $\alpha =\dfrac{1}{7}$
So, the correct answer is “Option C”.
Note: Be careful with the formulas used. The adjoint calculated as explained before , is for a $2\times 2$ matrix. The entire procedure will be different for higher order matrices. When finding the adjoint of $2\times 2$ matrix, \[A=\left[ \begin{matrix}
\begin{matrix}
{{a}_{11}} \\
{{a}_{21}} \\
\end{matrix} & \begin{matrix}
{{a}_{12}} \\
{{a}_{22}} \\
\end{matrix} \\
\end{matrix} \right]\] , do not change the signs of ${{a}_{11}}\text{ and }{{a}_{21}}$ and interchange ${{a}_{12}}\text{ and }{{a}_{21}}$ . Do the opposite of this.
Complete step by step answer:
It is given that \[A=\left[ \begin{matrix}
\begin{matrix}
2 \\
1 \\
\end{matrix} & \begin{matrix}
3 \\
-2 \\
\end{matrix} \\
\end{matrix} \right]\] and ${{A}^{-1}}=\alpha A$ . We need to find the value of $\alpha $ .
Let us consider ${{A}^{-1}}=\alpha A$ .
We know that ${{A}^{-1}}=\dfrac{adj(A)}{\left| A \right|}...(i)$ .
Let us first find $adj(A)$ . Consider a $2\times 2$ matrix as shown below:
\[A=\left[ \begin{matrix}
\begin{matrix}
{{a}_{11}} \\
{{a}_{21}} \\
\end{matrix} & \begin{matrix}
{{a}_{12}} \\
{{a}_{22}} \\
\end{matrix} \\
\end{matrix} \right]\]
To find the adjoint of a $2\times 2$ matrix, we should interchange ${{a}_{11}}\text{ and }{{a}_{21}}$ while changing the signs of ${{a}_{12}}\text{ and }{{a}_{21}}$ . Changing signs means + becomes – and – becomes +.
Hence, \[adj(A)=\left[ \begin{matrix}
\begin{matrix}
{{a}_{22}} \\
-{{a}_{21}} \\
\end{matrix} & \begin{matrix}
-{{a}_{12}} \\
{{a}_{12}} \\
\end{matrix} \\
\end{matrix} \right]\] .
Hence, we can find the adjoint of \[A=\left[ \begin{matrix}
\begin{matrix}
2 \\
1 \\
\end{matrix} & \begin{matrix}
3 \\
-2 \\
\end{matrix} \\
\end{matrix} \right]\] and is shown below.
$adj(A)=\left[ \begin{matrix}
\begin{matrix}
-2 \\
-1 \\
\end{matrix} & \begin{matrix}
-3 \\
2 \\
\end{matrix} \\
\end{matrix} \right]...(ii)$
Now, let us find the determinant of A.
Let us consider the determinant of matrix \[A=\left[ \begin{matrix}
\begin{matrix}
{{a}_{11}} \\
{{a}_{21}} \\
\end{matrix} & \begin{matrix}
{{a}_{12}} \\
{{a}_{22}} \\
\end{matrix} \\
\end{matrix} \right]\]
\[\left| A \right|=\left| \begin{matrix}
\begin{matrix}
{{a}_{11}} \\
{{a}_{21}} \\
\end{matrix} & \begin{matrix}
{{a}_{12}} \\
{{a}_{22}} \\
\end{matrix} \\
\end{matrix} \right|={{a}_{11}}{{a}_{22}}-{{a}_{12}}{{a}_{21}}\]
Now let us find the determinant of the matrix \[A=\left[ \begin{matrix}
\begin{matrix}
2 \\
1 \\
\end{matrix} & \begin{matrix}
3 \\
-2 \\
\end{matrix} \\
\end{matrix} \right]\] .
\[\left| A \right|=\left| \begin{matrix}
\begin{matrix}
2 \\
1 \\
\end{matrix} & \begin{matrix}
3 \\
-2 \\
\end{matrix} \\
\end{matrix} \right|=\left( 2\times -2 \right)-\left( 3\times 1 \right)\]
This can be solved to give
\[\left| A \right|=-4-3=-7...(iii)\]
Now let us substitute (ii) and (iii) in (i). We will get
${{A}^{-1}}=-\dfrac{1}{7}\left[ \begin{matrix}
\begin{matrix}
-2 \\
-1 \\
\end{matrix} & \begin{matrix}
-3 \\
2 \\
\end{matrix} \\
\end{matrix} \right]$
Let us take ‘-‘ common from the matrix to outside. Then we get
\[{{A}^{-1}}=\dfrac{1}{7}\left[ \begin{matrix}
\begin{matrix}
2 \\
1 \\
\end{matrix} & \begin{matrix}
3 \\
-2 \\
\end{matrix} \\
\end{matrix} \right]\]
Now, this is of the form
\[{{A}^{-1}}=\dfrac{1}{7}A\]
We can now compare this with ${{A}^{-1}}=\alpha A$ .
Hence, we get $\alpha =\dfrac{1}{7}$
So, the correct answer is “Option C”.
Note: Be careful with the formulas used. The adjoint calculated as explained before , is for a $2\times 2$ matrix. The entire procedure will be different for higher order matrices. When finding the adjoint of $2\times 2$ matrix, \[A=\left[ \begin{matrix}
\begin{matrix}
{{a}_{11}} \\
{{a}_{21}} \\
\end{matrix} & \begin{matrix}
{{a}_{12}} \\
{{a}_{22}} \\
\end{matrix} \\
\end{matrix} \right]\] , do not change the signs of ${{a}_{11}}\text{ and }{{a}_{21}}$ and interchange ${{a}_{12}}\text{ and }{{a}_{21}}$ . Do the opposite of this.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

