
Find the value of $\alpha $ if \[A=\left[ \begin{matrix}
\begin{matrix}
2 \\
1 \\
\end{matrix} & \begin{matrix}
3 \\
-2 \\
\end{matrix} \\
\end{matrix} \right]\] and ${{A}^{-1}}=\alpha A$ .
A. 7
B. -7
C. $\dfrac{1}{7}$
D. $-\dfrac{1}{7}$
Answer
584.1k+ views
Hint: To find the value of $\alpha $ in ${{A}^{-1}}=\alpha A$ , we will first use the formula ${{A}^{-1}}=\dfrac{adj(A)}{\left| A \right|}$ . After finding $adj(A)$ and $\left| A \right|$ , we will substitute these in the previous formula. After few simplifications and rearrangement, this equation will be of the form ${{A}^{-1}}=\alpha A$ . Hence by comparing, we get the value of $\alpha $ .
Complete step by step answer:
It is given that \[A=\left[ \begin{matrix}
\begin{matrix}
2 \\
1 \\
\end{matrix} & \begin{matrix}
3 \\
-2 \\
\end{matrix} \\
\end{matrix} \right]\] and ${{A}^{-1}}=\alpha A$ . We need to find the value of $\alpha $ .
Let us consider ${{A}^{-1}}=\alpha A$ .
We know that ${{A}^{-1}}=\dfrac{adj(A)}{\left| A \right|}...(i)$ .
Let us first find $adj(A)$ . Consider a $2\times 2$ matrix as shown below:
\[A=\left[ \begin{matrix}
\begin{matrix}
{{a}_{11}} \\
{{a}_{21}} \\
\end{matrix} & \begin{matrix}
{{a}_{12}} \\
{{a}_{22}} \\
\end{matrix} \\
\end{matrix} \right]\]
To find the adjoint of a $2\times 2$ matrix, we should interchange ${{a}_{11}}\text{ and }{{a}_{21}}$ while changing the signs of ${{a}_{12}}\text{ and }{{a}_{21}}$ . Changing signs means + becomes – and – becomes +.
Hence, \[adj(A)=\left[ \begin{matrix}
\begin{matrix}
{{a}_{22}} \\
-{{a}_{21}} \\
\end{matrix} & \begin{matrix}
-{{a}_{12}} \\
{{a}_{12}} \\
\end{matrix} \\
\end{matrix} \right]\] .
Hence, we can find the adjoint of \[A=\left[ \begin{matrix}
\begin{matrix}
2 \\
1 \\
\end{matrix} & \begin{matrix}
3 \\
-2 \\
\end{matrix} \\
\end{matrix} \right]\] and is shown below.
$adj(A)=\left[ \begin{matrix}
\begin{matrix}
-2 \\
-1 \\
\end{matrix} & \begin{matrix}
-3 \\
2 \\
\end{matrix} \\
\end{matrix} \right]...(ii)$
Now, let us find the determinant of A.
Let us consider the determinant of matrix \[A=\left[ \begin{matrix}
\begin{matrix}
{{a}_{11}} \\
{{a}_{21}} \\
\end{matrix} & \begin{matrix}
{{a}_{12}} \\
{{a}_{22}} \\
\end{matrix} \\
\end{matrix} \right]\]
\[\left| A \right|=\left| \begin{matrix}
\begin{matrix}
{{a}_{11}} \\
{{a}_{21}} \\
\end{matrix} & \begin{matrix}
{{a}_{12}} \\
{{a}_{22}} \\
\end{matrix} \\
\end{matrix} \right|={{a}_{11}}{{a}_{22}}-{{a}_{12}}{{a}_{21}}\]
Now let us find the determinant of the matrix \[A=\left[ \begin{matrix}
\begin{matrix}
2 \\
1 \\
\end{matrix} & \begin{matrix}
3 \\
-2 \\
\end{matrix} \\
\end{matrix} \right]\] .
\[\left| A \right|=\left| \begin{matrix}
\begin{matrix}
2 \\
1 \\
\end{matrix} & \begin{matrix}
3 \\
-2 \\
\end{matrix} \\
\end{matrix} \right|=\left( 2\times -2 \right)-\left( 3\times 1 \right)\]
This can be solved to give
\[\left| A \right|=-4-3=-7...(iii)\]
Now let us substitute (ii) and (iii) in (i). We will get
${{A}^{-1}}=-\dfrac{1}{7}\left[ \begin{matrix}
\begin{matrix}
-2 \\
-1 \\
\end{matrix} & \begin{matrix}
-3 \\
2 \\
\end{matrix} \\
\end{matrix} \right]$
Let us take ‘-‘ common from the matrix to outside. Then we get
\[{{A}^{-1}}=\dfrac{1}{7}\left[ \begin{matrix}
\begin{matrix}
2 \\
1 \\
\end{matrix} & \begin{matrix}
3 \\
-2 \\
\end{matrix} \\
\end{matrix} \right]\]
Now, this is of the form
\[{{A}^{-1}}=\dfrac{1}{7}A\]
We can now compare this with ${{A}^{-1}}=\alpha A$ .
Hence, we get $\alpha =\dfrac{1}{7}$
So, the correct answer is “Option C”.
Note: Be careful with the formulas used. The adjoint calculated as explained before , is for a $2\times 2$ matrix. The entire procedure will be different for higher order matrices. When finding the adjoint of $2\times 2$ matrix, \[A=\left[ \begin{matrix}
\begin{matrix}
{{a}_{11}} \\
{{a}_{21}} \\
\end{matrix} & \begin{matrix}
{{a}_{12}} \\
{{a}_{22}} \\
\end{matrix} \\
\end{matrix} \right]\] , do not change the signs of ${{a}_{11}}\text{ and }{{a}_{21}}$ and interchange ${{a}_{12}}\text{ and }{{a}_{21}}$ . Do the opposite of this.
Complete step by step answer:
It is given that \[A=\left[ \begin{matrix}
\begin{matrix}
2 \\
1 \\
\end{matrix} & \begin{matrix}
3 \\
-2 \\
\end{matrix} \\
\end{matrix} \right]\] and ${{A}^{-1}}=\alpha A$ . We need to find the value of $\alpha $ .
Let us consider ${{A}^{-1}}=\alpha A$ .
We know that ${{A}^{-1}}=\dfrac{adj(A)}{\left| A \right|}...(i)$ .
Let us first find $adj(A)$ . Consider a $2\times 2$ matrix as shown below:
\[A=\left[ \begin{matrix}
\begin{matrix}
{{a}_{11}} \\
{{a}_{21}} \\
\end{matrix} & \begin{matrix}
{{a}_{12}} \\
{{a}_{22}} \\
\end{matrix} \\
\end{matrix} \right]\]
To find the adjoint of a $2\times 2$ matrix, we should interchange ${{a}_{11}}\text{ and }{{a}_{21}}$ while changing the signs of ${{a}_{12}}\text{ and }{{a}_{21}}$ . Changing signs means + becomes – and – becomes +.
Hence, \[adj(A)=\left[ \begin{matrix}
\begin{matrix}
{{a}_{22}} \\
-{{a}_{21}} \\
\end{matrix} & \begin{matrix}
-{{a}_{12}} \\
{{a}_{12}} \\
\end{matrix} \\
\end{matrix} \right]\] .
Hence, we can find the adjoint of \[A=\left[ \begin{matrix}
\begin{matrix}
2 \\
1 \\
\end{matrix} & \begin{matrix}
3 \\
-2 \\
\end{matrix} \\
\end{matrix} \right]\] and is shown below.
$adj(A)=\left[ \begin{matrix}
\begin{matrix}
-2 \\
-1 \\
\end{matrix} & \begin{matrix}
-3 \\
2 \\
\end{matrix} \\
\end{matrix} \right]...(ii)$
Now, let us find the determinant of A.
Let us consider the determinant of matrix \[A=\left[ \begin{matrix}
\begin{matrix}
{{a}_{11}} \\
{{a}_{21}} \\
\end{matrix} & \begin{matrix}
{{a}_{12}} \\
{{a}_{22}} \\
\end{matrix} \\
\end{matrix} \right]\]
\[\left| A \right|=\left| \begin{matrix}
\begin{matrix}
{{a}_{11}} \\
{{a}_{21}} \\
\end{matrix} & \begin{matrix}
{{a}_{12}} \\
{{a}_{22}} \\
\end{matrix} \\
\end{matrix} \right|={{a}_{11}}{{a}_{22}}-{{a}_{12}}{{a}_{21}}\]
Now let us find the determinant of the matrix \[A=\left[ \begin{matrix}
\begin{matrix}
2 \\
1 \\
\end{matrix} & \begin{matrix}
3 \\
-2 \\
\end{matrix} \\
\end{matrix} \right]\] .
\[\left| A \right|=\left| \begin{matrix}
\begin{matrix}
2 \\
1 \\
\end{matrix} & \begin{matrix}
3 \\
-2 \\
\end{matrix} \\
\end{matrix} \right|=\left( 2\times -2 \right)-\left( 3\times 1 \right)\]
This can be solved to give
\[\left| A \right|=-4-3=-7...(iii)\]
Now let us substitute (ii) and (iii) in (i). We will get
${{A}^{-1}}=-\dfrac{1}{7}\left[ \begin{matrix}
\begin{matrix}
-2 \\
-1 \\
\end{matrix} & \begin{matrix}
-3 \\
2 \\
\end{matrix} \\
\end{matrix} \right]$
Let us take ‘-‘ common from the matrix to outside. Then we get
\[{{A}^{-1}}=\dfrac{1}{7}\left[ \begin{matrix}
\begin{matrix}
2 \\
1 \\
\end{matrix} & \begin{matrix}
3 \\
-2 \\
\end{matrix} \\
\end{matrix} \right]\]
Now, this is of the form
\[{{A}^{-1}}=\dfrac{1}{7}A\]
We can now compare this with ${{A}^{-1}}=\alpha A$ .
Hence, we get $\alpha =\dfrac{1}{7}$
So, the correct answer is “Option C”.
Note: Be careful with the formulas used. The adjoint calculated as explained before , is for a $2\times 2$ matrix. The entire procedure will be different for higher order matrices. When finding the adjoint of $2\times 2$ matrix, \[A=\left[ \begin{matrix}
\begin{matrix}
{{a}_{11}} \\
{{a}_{21}} \\
\end{matrix} & \begin{matrix}
{{a}_{12}} \\
{{a}_{22}} \\
\end{matrix} \\
\end{matrix} \right]\] , do not change the signs of ${{a}_{11}}\text{ and }{{a}_{21}}$ and interchange ${{a}_{12}}\text{ and }{{a}_{21}}$ . Do the opposite of this.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

