Answer
Verified
391.2k+ views
Hint: We need to use a given expression to find the value of another expression. We have to simplify a given expression and then find the value of the required expression in terms of ‘\[m\]’. We need to perform appropriate operations in order to have common terms,
Formula used:
\[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\]
Complete step-by-step solution:
Let us note the given equation,
\[a + \dfrac{1}{a} = m\]
Let us simplify the above equation,
On squaring both sides we get,
\[{\left( {a + \dfrac{1}{a}} \right)^2} = {m^2}\]
On expanding the bracket using formula \[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\] we get,
\[{a^2} + 2 + \dfrac{1}{{{a^2}}} = {m^2}\]
On subtraction $2$ from both sides we get,
\[{a^2} + \dfrac{1}{{{a^2}}} = {m^2} - 2\] $...................[1]$
We need to find the value of \[a - \dfrac{1}{a}\]
Let us simplify the above equation,
\[a - \dfrac{1}{a}\]
On squaring both sides we get,
\[{\left( {a - \dfrac{1}{a}} \right)^2} = {a^2} - 2 + \dfrac{1}{{{a^2}}}\]
On rearranging the terms on R.H.S. we get,
\[{\left( {a - \dfrac{1}{a}} \right)^2} = {a^2} + \dfrac{1}{{{a^2}}} - 2\]
Let us put the value from equation $[1]$ , \[{a^2} + \dfrac{1}{{{a^2}}} = {m^2} - 2\] in above equation,
\[{\left( {a - \dfrac{1}{a}} \right)^2} = {m^2} - 2 - 2\]
On performing subtraction on R.H.S. we get,
\[{\left( {a - \dfrac{1}{a}} \right)^2} = {m^2} - 4\]
On taking square roots on the both sides we get,
\[\therefore a - \dfrac{1}{a} = \pm \sqrt {{m^2} - 4} \]
This is the required value.
Hence option A) \[ \pm \sqrt {{m^2} - 4} \]is correct.
Note: In such questions where both terms have opposite signs, we need to perform operations like squaring, in order to get common terms from two different terms. Then we can substitute the value for a common term to obtain the required equation.
Formula used:
\[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\]
Complete step-by-step solution:
Let us note the given equation,
\[a + \dfrac{1}{a} = m\]
Let us simplify the above equation,
On squaring both sides we get,
\[{\left( {a + \dfrac{1}{a}} \right)^2} = {m^2}\]
On expanding the bracket using formula \[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\] we get,
\[{a^2} + 2 + \dfrac{1}{{{a^2}}} = {m^2}\]
On subtraction $2$ from both sides we get,
\[{a^2} + \dfrac{1}{{{a^2}}} = {m^2} - 2\] $...................[1]$
We need to find the value of \[a - \dfrac{1}{a}\]
Let us simplify the above equation,
\[a - \dfrac{1}{a}\]
On squaring both sides we get,
\[{\left( {a - \dfrac{1}{a}} \right)^2} = {a^2} - 2 + \dfrac{1}{{{a^2}}}\]
On rearranging the terms on R.H.S. we get,
\[{\left( {a - \dfrac{1}{a}} \right)^2} = {a^2} + \dfrac{1}{{{a^2}}} - 2\]
Let us put the value from equation $[1]$ , \[{a^2} + \dfrac{1}{{{a^2}}} = {m^2} - 2\] in above equation,
\[{\left( {a - \dfrac{1}{a}} \right)^2} = {m^2} - 2 - 2\]
On performing subtraction on R.H.S. we get,
\[{\left( {a - \dfrac{1}{a}} \right)^2} = {m^2} - 4\]
On taking square roots on the both sides we get,
\[\therefore a - \dfrac{1}{a} = \pm \sqrt {{m^2} - 4} \]
This is the required value.
Hence option A) \[ \pm \sqrt {{m^2} - 4} \]is correct.
Note: In such questions where both terms have opposite signs, we need to perform operations like squaring, in order to get common terms from two different terms. Then we can substitute the value for a common term to obtain the required equation.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Sound waves travel faster in air than in water True class 12 physics CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE