
Find the value of a : b : c : d, if a : b = 2 : 3, b : c = 4 : 5 and c : d = 6 : 7.
Answer
510k+ views
1 likes
Hint: To solve this question, we need to make the common variables uniform across different ratios by finding the lowest common multiple (LCM) of values of those common variables in different ratios, like b in a : b and b : c and c in b : c and c : d. Once we get the value of b and c such that they are uniform across various ratios, we can combine the ratios with common values, like a : b and b : c can be combined as a : b : c, given b has the same value in a : b and b : c. Thus, in similar fashion, we can find the value of a : b : c : d.
Complete step by step answer:
Let us first consider the value of b.
It is given that a : b = 2 : 3 and b : c = 4 : 5. Thus, LCM of 3 and 4 is 12. Therefore, we need to multiply the first ratio by 4 and the second ratio by 3.
a : b = 4(2) : 4(3) = 8 : 12
b : c = 3(4) : 3(5) = 12 : 15
Now, as the value of b is common across the two ratios, we can combine them.
Therefore, a : b : c = 8 : 12 : 15.
Now, we shall make the value of c common.
The ratios with us are a : b : c = 8 : 12 : 15 and c : d = 6 : 7.
LCM of 15 and 6 is 30. Therefore, we need to multiply the first ratio by 2 and the second ratio by 5.
a : b : c = 2(8) : 2(12) : 2(15) = 16 : 24 : 30
c : d = 5(6) : 5(7) = 30 : 35
Now, as the value of c is common across the two ratios, we can combine them.
Therefore a : b : c : d = 16 : 24 : 30 : 35
Note: It is to be noted that the multiplying the antecedent and consequent of the ratio with the same number does not change the value of the ratio.
Complete step by step answer:
Let us first consider the value of b.
It is given that a : b = 2 : 3 and b : c = 4 : 5. Thus, LCM of 3 and 4 is 12. Therefore, we need to multiply the first ratio by 4 and the second ratio by 3.
Now, as the value of b is common across the two ratios, we can combine them.
Therefore, a : b : c = 8 : 12 : 15.
Now, we shall make the value of c common.
The ratios with us are a : b : c = 8 : 12 : 15 and c : d = 6 : 7.
LCM of 15 and 6 is 30. Therefore, we need to multiply the first ratio by 2 and the second ratio by 5.
Now, as the value of c is common across the two ratios, we can combine them.
Therefore a : b : c : d = 16 : 24 : 30 : 35
Note: It is to be noted that the multiplying the antecedent and consequent of the ratio with the same number does not change the value of the ratio.
Latest Vedantu courses for you
Grade 6 | CBSE | SCHOOL | English
Vedantu 6 Pro Course (2025-26)
School Full course for CBSE students
₹42,330 per year
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What is the Full Form of ISI and RAW

Discuss what these phrases mean to you A a yellow wood class 9 english CBSE

Name 10 Living and Non living things class 9 biology CBSE

Name the states which share their boundary with Indias class 9 social science CBSE
