
Find the value of A + B, if $ \int{\dfrac{4{{e}^{x}}+6{{e}^{-x}}}{9{{e}^{x}}-4{{e}^{-x}}}dx=Ax+B\ln \left( 9{{e}^{2x}}-4 \right)+C} $
(a) $ -\dfrac{9}{25} $
(b) $ -\dfrac{19}{36} $
(c) $ \dfrac{19}{36} $
(d) $ \dfrac{9}{35} $
Answer
579k+ views
Hint: To solve this question, we will first simplify the given expression as much as possible. Then we will write the numerator as the sum of some factor into denominator and some factor into derivative of denominator. Then we will find the values of those factors and split the numerator and then integrate them. In this way, we can avoid complex integrations. Thus, we will find the integral in the form $ Ax+B\ln \left( 9{{e}^{2x}}-4 \right)+C $ and find the value of A and B. After adding A and B, we get the solution to the question.
Complete step-by-step answer:
To begin with, we will multiply and divide the given expression by $ {{e}^{x}} $ .
$ \Rightarrow \dfrac{4{{e}^{x}}+6{{e}^{-x}}}{9{{e}^{x}}-4{{e}^{-x}}}\times \dfrac{{{e}^{x}}}{{{e}^{x}}}=\dfrac{4{{e}^{2x}}+6}{9{{e}^{2x}}-4} $
Now, we need to split the numerator in such a way that one term is multiple of denominator and the other is the multiple of derivative of the denominator.
The denominator with us is $ 9{{e}^{2x}}-4 $ .
$ \Rightarrow \dfrac{d\left( 9{{e}^{2x}}-4 \right)}{dx}=18{{e}^{2x}} $
Thus, $ 4{{e}^{2x}}+6=M\left( 9{{e}^{2x}}-4 \right)+N\left( 18{{e}^{2x}} \right) $
Now, we need to find value of M and N.
From the LHS and RHS, we can say that;
9M + 18N = 4
─4M = 6
$ \Rightarrow $ M = $ -\dfrac{3}{2} $
We will substitute M = $ -\dfrac{3}{2} $ in 9M + 18N = 4
$ \begin{align}
& \Rightarrow 9\times -\dfrac{3}{2}+18\text{N}=4 \\
& \Rightarrow \text{N}=\dfrac{35}{36} \\
\end{align} $
Thus, $ 4{{e}^{2x}}+6=-\dfrac{3}{2}\left( 9{{e}^{2x}}-4 \right)+\dfrac{35}{36}\left( 18{{e}^{2x}} \right) $
Thus, the expression modifies as $ \dfrac{4{{e}^{x}}+6{{e}^{-x}}}{9{{e}^{x}}-4{{e}^{-x}}}=\dfrac{-\dfrac{3}{2}\left( 9{{e}^{2x}}-4 \right)+\dfrac{35}{36}\left( 18{{e}^{2x}} \right)}{9{{e}^{2x}}-4} $
Thus, we can split the whole expression.
$ \Rightarrow \dfrac{-\dfrac{3}{2}\left( 9{{e}^{2x}}-4 \right)+\dfrac{35}{36}\left( 18{{e}^{2x}} \right)}{9{{e}^{2x}}-4}=-\dfrac{3}{2}\left( 1 \right)+\dfrac{35}{36}\times \dfrac{18{{e}^{2x}}}{\left( 9{{e}^{2x}}-4 \right)} $
Now, we shall integrate $ -\dfrac{3}{2}\left( 1 \right)+\dfrac{35}{36}\times \dfrac{18{{e}^{2x}}}{\left( 9{{e}^{2x}}-4 \right)} $ .
We shall remember that $ \int{\dfrac{f'\left( x \right)}{f\left( x \right)}=\ln \left( f\left( x \right) \right)} $
$ \Rightarrow \int{-\dfrac{3}{2}\left( 1 \right)+\dfrac{35}{36}\times \dfrac{18{{e}^{2x}}}{\left( 9{{e}^{2x}}-4 \right)}=-\dfrac{3}{2}x+\dfrac{35}{36}\ln \left( 9{{e}^{2x}}-4 \right)+C} $
Thus, A = $ -\dfrac{3}{2} $ and B = $ \dfrac{35}{36} $ .
So, A + B = \[-\dfrac{3}{2}+\dfrac{35}{36}\]
$ \Rightarrow $ A + B = $ -\dfrac{19}{36} $
So, the correct answer is “Option B”.
Note: If splitting of the numerator would not have been done, we would have to integrate it by parts. The formula for integration by parts is as follows: $ \int{uv=u\int{v-\int{\int{v-\dfrac{du}{dx}}}}} $ .
Complete step-by-step answer:
To begin with, we will multiply and divide the given expression by $ {{e}^{x}} $ .
$ \Rightarrow \dfrac{4{{e}^{x}}+6{{e}^{-x}}}{9{{e}^{x}}-4{{e}^{-x}}}\times \dfrac{{{e}^{x}}}{{{e}^{x}}}=\dfrac{4{{e}^{2x}}+6}{9{{e}^{2x}}-4} $
Now, we need to split the numerator in such a way that one term is multiple of denominator and the other is the multiple of derivative of the denominator.
The denominator with us is $ 9{{e}^{2x}}-4 $ .
$ \Rightarrow \dfrac{d\left( 9{{e}^{2x}}-4 \right)}{dx}=18{{e}^{2x}} $
Thus, $ 4{{e}^{2x}}+6=M\left( 9{{e}^{2x}}-4 \right)+N\left( 18{{e}^{2x}} \right) $
Now, we need to find value of M and N.
From the LHS and RHS, we can say that;
9M + 18N = 4
─4M = 6
$ \Rightarrow $ M = $ -\dfrac{3}{2} $
We will substitute M = $ -\dfrac{3}{2} $ in 9M + 18N = 4
$ \begin{align}
& \Rightarrow 9\times -\dfrac{3}{2}+18\text{N}=4 \\
& \Rightarrow \text{N}=\dfrac{35}{36} \\
\end{align} $
Thus, $ 4{{e}^{2x}}+6=-\dfrac{3}{2}\left( 9{{e}^{2x}}-4 \right)+\dfrac{35}{36}\left( 18{{e}^{2x}} \right) $
Thus, the expression modifies as $ \dfrac{4{{e}^{x}}+6{{e}^{-x}}}{9{{e}^{x}}-4{{e}^{-x}}}=\dfrac{-\dfrac{3}{2}\left( 9{{e}^{2x}}-4 \right)+\dfrac{35}{36}\left( 18{{e}^{2x}} \right)}{9{{e}^{2x}}-4} $
Thus, we can split the whole expression.
$ \Rightarrow \dfrac{-\dfrac{3}{2}\left( 9{{e}^{2x}}-4 \right)+\dfrac{35}{36}\left( 18{{e}^{2x}} \right)}{9{{e}^{2x}}-4}=-\dfrac{3}{2}\left( 1 \right)+\dfrac{35}{36}\times \dfrac{18{{e}^{2x}}}{\left( 9{{e}^{2x}}-4 \right)} $
Now, we shall integrate $ -\dfrac{3}{2}\left( 1 \right)+\dfrac{35}{36}\times \dfrac{18{{e}^{2x}}}{\left( 9{{e}^{2x}}-4 \right)} $ .
We shall remember that $ \int{\dfrac{f'\left( x \right)}{f\left( x \right)}=\ln \left( f\left( x \right) \right)} $
$ \Rightarrow \int{-\dfrac{3}{2}\left( 1 \right)+\dfrac{35}{36}\times \dfrac{18{{e}^{2x}}}{\left( 9{{e}^{2x}}-4 \right)}=-\dfrac{3}{2}x+\dfrac{35}{36}\ln \left( 9{{e}^{2x}}-4 \right)+C} $
Thus, A = $ -\dfrac{3}{2} $ and B = $ \dfrac{35}{36} $ .
So, A + B = \[-\dfrac{3}{2}+\dfrac{35}{36}\]
$ \Rightarrow $ A + B = $ -\dfrac{19}{36} $
So, the correct answer is “Option B”.
Note: If splitting of the numerator would not have been done, we would have to integrate it by parts. The formula for integration by parts is as follows: $ \int{uv=u\int{v-\int{\int{v-\dfrac{du}{dx}}}}} $ .
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

