
Find the value of $^{6}{{C}_{0}}^{12}{{C}_{6}}{{-}^{6}}{{C}_{1}}^{11}{{C}_{6}}+\cdots {{+}^{6}}{{C}_{6}}^{6}{{C}_{6}}$.
Answer
516k+ views
Hint: Use $^{n}{{C}_{r}}=\dfrac{n!}{\left( n-r \right)!r!}$. Hence calculate the value of each term in the series and hence find the sum of the series. Alternatively, simplify the expression $^{6}{{C}_{r}}^{n-r}{{C}_{6}}$ and hence find an expression in r by putting r = 0,1,2,..6 and solve.
Complete step-by-step answer:
We know that $^{n}{{C}_{r}}=\dfrac{n!}{\left( n-r \right)!r!}$
Put n = 6, r =0, we get
$^{6}{{C}_{0}}=\dfrac{6!}{6!}=1$
Put n = 6, r = 1, we get
$^{6}{{C}_{1}}=6$
Put n = 6, r = 2, we get
$^{6}{{C}_{2}}=15$
Put n = 6, r = 3, we get
$^{6}{{C}_{3}}=20$
Similarly $^{6}{{C}_{4}}=15{{,}^{6}}{{C}_{5}}=6$ and $^{6}{{C}_{6}}=1$
Now put n = 12 and r = 6
$^{12}{{C}_{6}}=\dfrac{12!}{6!6!}=924$
Now, we have $\dfrac{^{n-1}{{C}_{r}}}{^{n}{{C}_{r}}}=\dfrac{n-r}{n}$
Hence, we have
$^{n-1}{{C}_{r}}=\dfrac{n-r}{n}{{\times }^{n}}{{C}_{r}}$
Using the above formula, we get
$\begin{align}
& ^{11}{{C}_{6}}=\dfrac{12-6}{12}{{\times }^{12}}{{C}_{6}}=\dfrac{6}{12}\times 924=462 \\
& {{\Rightarrow }^{10}}{{C}_{6}}=\dfrac{11-6}{11}{{\times }^{11}}{{C}_{6}}=\dfrac{5}{11}\times 462=210 \\
& {{\Rightarrow }^{9}}{{C}_{6}}=\dfrac{4}{10}\times 210=84 \\
& {{\Rightarrow }^{8}}{{C}_{6}}=\dfrac{3}{9}\times 84=28 \\
& {{\Rightarrow }^{7}}{{C}_{6}}=\dfrac{2}{8}\times 28=7 \\
& {{\Rightarrow }^{6}}{{C}_{6}}=\dfrac{7}{7}=1 \\
\end{align}$
Hence the given sum becomes
$924-462(6)+210(15)-84(20)+28(15)-7(6)+1(1) = 1$
Note: [1] Alternatively, we have
${{T}_{r}}{{=}^{6}}{{C}_{r}}^{12-r}{{C}_{6}}=\dfrac{6!}{\left( 6-r \right)!r!}\times \dfrac{\left( 12-r \right)!}{\left( 6-r \right)!6!}=\dfrac{\left( 12-r \right)!}{\left( 6-r \right)!\left( 6-r \right)!r!}$
Hence we have $\dfrac{{{T}_{r+1}}}{{{T}_{r}}}=\dfrac{{{\left( 6-r \right)}^{2}}}{\left( 12-r \right)\left( r+1 \right)}$
Now we have ${{T}_{0}}=\dfrac{12!}{6!6!}=924$
Hence, we have
$\begin{align}
& {{T}_{1}}=924\times \dfrac{{{6}^{2}}}{12}=2772 \\
& \Rightarrow {{T}_{2}}=2772\times \dfrac{{{5}^{2}}}{\left( 11 \right)\left( 2 \right)}=3150 \\
& \Rightarrow {{T}_{3}}=3150\times \dfrac{{{4}^{2}}}{10\left( 3 \right)}=1680 \\
& \Rightarrow {{T}_{4}}=1680\times \dfrac{{{3}^{2}}}{9\left( 4 \right)}=420 \\
& \Rightarrow {{T}_{5}}=420\times \dfrac{{{2}^{2}}}{\left( 8 \right)\left( 5 \right)}=42 \\
& \Rightarrow {{T}_{6}}=42\times \dfrac{{{1}^{2}}}{7\left( 6 \right)}=1 \\
\end{align}$
Hence the sum equals $924-2772+3150-1680+420-42+1=1$.
Hence the sum of the series equals 1.
[2] Students often make a mistake by writing $^{12-r}{{C}_{6}}^{6}{{C}_{r}}{{=}^{12-r}}{{C}_{6-r}}^{6}{{C}_{r}}$ and equating it to the coefficient of ${{x}^{6}}$ in the expansion of ${{\left( 1+x \right)}^{6}}{{\left( 1-x \right)}^{12-r}}$, which is not correct and will yield incorrect results. There are many more terms responsible for the coefficient of ${{x}^{6}}$ in the expansion of ${{\left( 1+x \right)}^{6}}{{\left( 1-x \right)}^{12-r}}$ other than $^{12-r}{{C}_{6-r}}^{6}{{C}_{r}}$.
Complete step-by-step answer:
We know that $^{n}{{C}_{r}}=\dfrac{n!}{\left( n-r \right)!r!}$
Put n = 6, r =0, we get
$^{6}{{C}_{0}}=\dfrac{6!}{6!}=1$
Put n = 6, r = 1, we get
$^{6}{{C}_{1}}=6$
Put n = 6, r = 2, we get
$^{6}{{C}_{2}}=15$
Put n = 6, r = 3, we get
$^{6}{{C}_{3}}=20$
Similarly $^{6}{{C}_{4}}=15{{,}^{6}}{{C}_{5}}=6$ and $^{6}{{C}_{6}}=1$
Now put n = 12 and r = 6
$^{12}{{C}_{6}}=\dfrac{12!}{6!6!}=924$
Now, we have $\dfrac{^{n-1}{{C}_{r}}}{^{n}{{C}_{r}}}=\dfrac{n-r}{n}$
Hence, we have
$^{n-1}{{C}_{r}}=\dfrac{n-r}{n}{{\times }^{n}}{{C}_{r}}$
Using the above formula, we get
$\begin{align}
& ^{11}{{C}_{6}}=\dfrac{12-6}{12}{{\times }^{12}}{{C}_{6}}=\dfrac{6}{12}\times 924=462 \\
& {{\Rightarrow }^{10}}{{C}_{6}}=\dfrac{11-6}{11}{{\times }^{11}}{{C}_{6}}=\dfrac{5}{11}\times 462=210 \\
& {{\Rightarrow }^{9}}{{C}_{6}}=\dfrac{4}{10}\times 210=84 \\
& {{\Rightarrow }^{8}}{{C}_{6}}=\dfrac{3}{9}\times 84=28 \\
& {{\Rightarrow }^{7}}{{C}_{6}}=\dfrac{2}{8}\times 28=7 \\
& {{\Rightarrow }^{6}}{{C}_{6}}=\dfrac{7}{7}=1 \\
\end{align}$
Hence the given sum becomes
$924-462(6)+210(15)-84(20)+28(15)-7(6)+1(1) = 1$
Note: [1] Alternatively, we have
${{T}_{r}}{{=}^{6}}{{C}_{r}}^{12-r}{{C}_{6}}=\dfrac{6!}{\left( 6-r \right)!r!}\times \dfrac{\left( 12-r \right)!}{\left( 6-r \right)!6!}=\dfrac{\left( 12-r \right)!}{\left( 6-r \right)!\left( 6-r \right)!r!}$
Hence we have $\dfrac{{{T}_{r+1}}}{{{T}_{r}}}=\dfrac{{{\left( 6-r \right)}^{2}}}{\left( 12-r \right)\left( r+1 \right)}$
Now we have ${{T}_{0}}=\dfrac{12!}{6!6!}=924$
Hence, we have
$\begin{align}
& {{T}_{1}}=924\times \dfrac{{{6}^{2}}}{12}=2772 \\
& \Rightarrow {{T}_{2}}=2772\times \dfrac{{{5}^{2}}}{\left( 11 \right)\left( 2 \right)}=3150 \\
& \Rightarrow {{T}_{3}}=3150\times \dfrac{{{4}^{2}}}{10\left( 3 \right)}=1680 \\
& \Rightarrow {{T}_{4}}=1680\times \dfrac{{{3}^{2}}}{9\left( 4 \right)}=420 \\
& \Rightarrow {{T}_{5}}=420\times \dfrac{{{2}^{2}}}{\left( 8 \right)\left( 5 \right)}=42 \\
& \Rightarrow {{T}_{6}}=42\times \dfrac{{{1}^{2}}}{7\left( 6 \right)}=1 \\
\end{align}$
Hence the sum equals $924-2772+3150-1680+420-42+1=1$.
Hence the sum of the series equals 1.
[2] Students often make a mistake by writing $^{12-r}{{C}_{6}}^{6}{{C}_{r}}{{=}^{12-r}}{{C}_{6-r}}^{6}{{C}_{r}}$ and equating it to the coefficient of ${{x}^{6}}$ in the expansion of ${{\left( 1+x \right)}^{6}}{{\left( 1-x \right)}^{12-r}}$, which is not correct and will yield incorrect results. There are many more terms responsible for the coefficient of ${{x}^{6}}$ in the expansion of ${{\left( 1+x \right)}^{6}}{{\left( 1-x \right)}^{12-r}}$ other than $^{12-r}{{C}_{6-r}}^{6}{{C}_{r}}$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
