
Find the value of $^{6}{{C}_{0}}^{12}{{C}_{6}}{{-}^{6}}{{C}_{1}}^{11}{{C}_{6}}+\cdots {{+}^{6}}{{C}_{6}}^{6}{{C}_{6}}$.
Answer
600k+ views
Hint: Use $^{n}{{C}_{r}}=\dfrac{n!}{\left( n-r \right)!r!}$. Hence calculate the value of each term in the series and hence find the sum of the series. Alternatively, simplify the expression $^{6}{{C}_{r}}^{n-r}{{C}_{6}}$ and hence find an expression in r by putting r = 0,1,2,..6 and solve.
Complete step-by-step answer:
We know that $^{n}{{C}_{r}}=\dfrac{n!}{\left( n-r \right)!r!}$
Put n = 6, r =0, we get
$^{6}{{C}_{0}}=\dfrac{6!}{6!}=1$
Put n = 6, r = 1, we get
$^{6}{{C}_{1}}=6$
Put n = 6, r = 2, we get
$^{6}{{C}_{2}}=15$
Put n = 6, r = 3, we get
$^{6}{{C}_{3}}=20$
Similarly $^{6}{{C}_{4}}=15{{,}^{6}}{{C}_{5}}=6$ and $^{6}{{C}_{6}}=1$
Now put n = 12 and r = 6
$^{12}{{C}_{6}}=\dfrac{12!}{6!6!}=924$
Now, we have $\dfrac{^{n-1}{{C}_{r}}}{^{n}{{C}_{r}}}=\dfrac{n-r}{n}$
Hence, we have
$^{n-1}{{C}_{r}}=\dfrac{n-r}{n}{{\times }^{n}}{{C}_{r}}$
Using the above formula, we get
$\begin{align}
& ^{11}{{C}_{6}}=\dfrac{12-6}{12}{{\times }^{12}}{{C}_{6}}=\dfrac{6}{12}\times 924=462 \\
& {{\Rightarrow }^{10}}{{C}_{6}}=\dfrac{11-6}{11}{{\times }^{11}}{{C}_{6}}=\dfrac{5}{11}\times 462=210 \\
& {{\Rightarrow }^{9}}{{C}_{6}}=\dfrac{4}{10}\times 210=84 \\
& {{\Rightarrow }^{8}}{{C}_{6}}=\dfrac{3}{9}\times 84=28 \\
& {{\Rightarrow }^{7}}{{C}_{6}}=\dfrac{2}{8}\times 28=7 \\
& {{\Rightarrow }^{6}}{{C}_{6}}=\dfrac{7}{7}=1 \\
\end{align}$
Hence the given sum becomes
$924-462(6)+210(15)-84(20)+28(15)-7(6)+1(1) = 1$
Note: [1] Alternatively, we have
${{T}_{r}}{{=}^{6}}{{C}_{r}}^{12-r}{{C}_{6}}=\dfrac{6!}{\left( 6-r \right)!r!}\times \dfrac{\left( 12-r \right)!}{\left( 6-r \right)!6!}=\dfrac{\left( 12-r \right)!}{\left( 6-r \right)!\left( 6-r \right)!r!}$
Hence we have $\dfrac{{{T}_{r+1}}}{{{T}_{r}}}=\dfrac{{{\left( 6-r \right)}^{2}}}{\left( 12-r \right)\left( r+1 \right)}$
Now we have ${{T}_{0}}=\dfrac{12!}{6!6!}=924$
Hence, we have
$\begin{align}
& {{T}_{1}}=924\times \dfrac{{{6}^{2}}}{12}=2772 \\
& \Rightarrow {{T}_{2}}=2772\times \dfrac{{{5}^{2}}}{\left( 11 \right)\left( 2 \right)}=3150 \\
& \Rightarrow {{T}_{3}}=3150\times \dfrac{{{4}^{2}}}{10\left( 3 \right)}=1680 \\
& \Rightarrow {{T}_{4}}=1680\times \dfrac{{{3}^{2}}}{9\left( 4 \right)}=420 \\
& \Rightarrow {{T}_{5}}=420\times \dfrac{{{2}^{2}}}{\left( 8 \right)\left( 5 \right)}=42 \\
& \Rightarrow {{T}_{6}}=42\times \dfrac{{{1}^{2}}}{7\left( 6 \right)}=1 \\
\end{align}$
Hence the sum equals $924-2772+3150-1680+420-42+1=1$.
Hence the sum of the series equals 1.
[2] Students often make a mistake by writing $^{12-r}{{C}_{6}}^{6}{{C}_{r}}{{=}^{12-r}}{{C}_{6-r}}^{6}{{C}_{r}}$ and equating it to the coefficient of ${{x}^{6}}$ in the expansion of ${{\left( 1+x \right)}^{6}}{{\left( 1-x \right)}^{12-r}}$, which is not correct and will yield incorrect results. There are many more terms responsible for the coefficient of ${{x}^{6}}$ in the expansion of ${{\left( 1+x \right)}^{6}}{{\left( 1-x \right)}^{12-r}}$ other than $^{12-r}{{C}_{6-r}}^{6}{{C}_{r}}$.
Complete step-by-step answer:
We know that $^{n}{{C}_{r}}=\dfrac{n!}{\left( n-r \right)!r!}$
Put n = 6, r =0, we get
$^{6}{{C}_{0}}=\dfrac{6!}{6!}=1$
Put n = 6, r = 1, we get
$^{6}{{C}_{1}}=6$
Put n = 6, r = 2, we get
$^{6}{{C}_{2}}=15$
Put n = 6, r = 3, we get
$^{6}{{C}_{3}}=20$
Similarly $^{6}{{C}_{4}}=15{{,}^{6}}{{C}_{5}}=6$ and $^{6}{{C}_{6}}=1$
Now put n = 12 and r = 6
$^{12}{{C}_{6}}=\dfrac{12!}{6!6!}=924$
Now, we have $\dfrac{^{n-1}{{C}_{r}}}{^{n}{{C}_{r}}}=\dfrac{n-r}{n}$
Hence, we have
$^{n-1}{{C}_{r}}=\dfrac{n-r}{n}{{\times }^{n}}{{C}_{r}}$
Using the above formula, we get
$\begin{align}
& ^{11}{{C}_{6}}=\dfrac{12-6}{12}{{\times }^{12}}{{C}_{6}}=\dfrac{6}{12}\times 924=462 \\
& {{\Rightarrow }^{10}}{{C}_{6}}=\dfrac{11-6}{11}{{\times }^{11}}{{C}_{6}}=\dfrac{5}{11}\times 462=210 \\
& {{\Rightarrow }^{9}}{{C}_{6}}=\dfrac{4}{10}\times 210=84 \\
& {{\Rightarrow }^{8}}{{C}_{6}}=\dfrac{3}{9}\times 84=28 \\
& {{\Rightarrow }^{7}}{{C}_{6}}=\dfrac{2}{8}\times 28=7 \\
& {{\Rightarrow }^{6}}{{C}_{6}}=\dfrac{7}{7}=1 \\
\end{align}$
Hence the given sum becomes
$924-462(6)+210(15)-84(20)+28(15)-7(6)+1(1) = 1$
Note: [1] Alternatively, we have
${{T}_{r}}{{=}^{6}}{{C}_{r}}^{12-r}{{C}_{6}}=\dfrac{6!}{\left( 6-r \right)!r!}\times \dfrac{\left( 12-r \right)!}{\left( 6-r \right)!6!}=\dfrac{\left( 12-r \right)!}{\left( 6-r \right)!\left( 6-r \right)!r!}$
Hence we have $\dfrac{{{T}_{r+1}}}{{{T}_{r}}}=\dfrac{{{\left( 6-r \right)}^{2}}}{\left( 12-r \right)\left( r+1 \right)}$
Now we have ${{T}_{0}}=\dfrac{12!}{6!6!}=924$
Hence, we have
$\begin{align}
& {{T}_{1}}=924\times \dfrac{{{6}^{2}}}{12}=2772 \\
& \Rightarrow {{T}_{2}}=2772\times \dfrac{{{5}^{2}}}{\left( 11 \right)\left( 2 \right)}=3150 \\
& \Rightarrow {{T}_{3}}=3150\times \dfrac{{{4}^{2}}}{10\left( 3 \right)}=1680 \\
& \Rightarrow {{T}_{4}}=1680\times \dfrac{{{3}^{2}}}{9\left( 4 \right)}=420 \\
& \Rightarrow {{T}_{5}}=420\times \dfrac{{{2}^{2}}}{\left( 8 \right)\left( 5 \right)}=42 \\
& \Rightarrow {{T}_{6}}=42\times \dfrac{{{1}^{2}}}{7\left( 6 \right)}=1 \\
\end{align}$
Hence the sum equals $924-2772+3150-1680+420-42+1=1$.
Hence the sum of the series equals 1.
[2] Students often make a mistake by writing $^{12-r}{{C}_{6}}^{6}{{C}_{r}}{{=}^{12-r}}{{C}_{6-r}}^{6}{{C}_{r}}$ and equating it to the coefficient of ${{x}^{6}}$ in the expansion of ${{\left( 1+x \right)}^{6}}{{\left( 1-x \right)}^{12-r}}$, which is not correct and will yield incorrect results. There are many more terms responsible for the coefficient of ${{x}^{6}}$ in the expansion of ${{\left( 1+x \right)}^{6}}{{\left( 1-x \right)}^{12-r}}$ other than $^{12-r}{{C}_{6-r}}^{6}{{C}_{r}}$.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

