
Find the value of $^{6}{{C}_{0}}^{12}{{C}_{6}}{{-}^{6}}{{C}_{1}}^{11}{{C}_{6}}+\cdots {{+}^{6}}{{C}_{6}}^{6}{{C}_{6}}$.
Answer
613.5k+ views
Hint: Use $^{n}{{C}_{r}}=\dfrac{n!}{\left( n-r \right)!r!}$. Hence calculate the value of each term in the series and hence find the sum of the series. Alternatively, simplify the expression $^{6}{{C}_{r}}^{n-r}{{C}_{6}}$ and hence find an expression in r by putting r = 0,1,2,..6 and solve.
Complete step-by-step answer:
We know that $^{n}{{C}_{r}}=\dfrac{n!}{\left( n-r \right)!r!}$
Put n = 6, r =0, we get
$^{6}{{C}_{0}}=\dfrac{6!}{6!}=1$
Put n = 6, r = 1, we get
$^{6}{{C}_{1}}=6$
Put n = 6, r = 2, we get
$^{6}{{C}_{2}}=15$
Put n = 6, r = 3, we get
$^{6}{{C}_{3}}=20$
Similarly $^{6}{{C}_{4}}=15{{,}^{6}}{{C}_{5}}=6$ and $^{6}{{C}_{6}}=1$
Now put n = 12 and r = 6
$^{12}{{C}_{6}}=\dfrac{12!}{6!6!}=924$
Now, we have $\dfrac{^{n-1}{{C}_{r}}}{^{n}{{C}_{r}}}=\dfrac{n-r}{n}$
Hence, we have
$^{n-1}{{C}_{r}}=\dfrac{n-r}{n}{{\times }^{n}}{{C}_{r}}$
Using the above formula, we get
$\begin{align}
& ^{11}{{C}_{6}}=\dfrac{12-6}{12}{{\times }^{12}}{{C}_{6}}=\dfrac{6}{12}\times 924=462 \\
& {{\Rightarrow }^{10}}{{C}_{6}}=\dfrac{11-6}{11}{{\times }^{11}}{{C}_{6}}=\dfrac{5}{11}\times 462=210 \\
& {{\Rightarrow }^{9}}{{C}_{6}}=\dfrac{4}{10}\times 210=84 \\
& {{\Rightarrow }^{8}}{{C}_{6}}=\dfrac{3}{9}\times 84=28 \\
& {{\Rightarrow }^{7}}{{C}_{6}}=\dfrac{2}{8}\times 28=7 \\
& {{\Rightarrow }^{6}}{{C}_{6}}=\dfrac{7}{7}=1 \\
\end{align}$
Hence the given sum becomes
$924-462(6)+210(15)-84(20)+28(15)-7(6)+1(1) = 1$
Note: [1] Alternatively, we have
${{T}_{r}}{{=}^{6}}{{C}_{r}}^{12-r}{{C}_{6}}=\dfrac{6!}{\left( 6-r \right)!r!}\times \dfrac{\left( 12-r \right)!}{\left( 6-r \right)!6!}=\dfrac{\left( 12-r \right)!}{\left( 6-r \right)!\left( 6-r \right)!r!}$
Hence we have $\dfrac{{{T}_{r+1}}}{{{T}_{r}}}=\dfrac{{{\left( 6-r \right)}^{2}}}{\left( 12-r \right)\left( r+1 \right)}$
Now we have ${{T}_{0}}=\dfrac{12!}{6!6!}=924$
Hence, we have
$\begin{align}
& {{T}_{1}}=924\times \dfrac{{{6}^{2}}}{12}=2772 \\
& \Rightarrow {{T}_{2}}=2772\times \dfrac{{{5}^{2}}}{\left( 11 \right)\left( 2 \right)}=3150 \\
& \Rightarrow {{T}_{3}}=3150\times \dfrac{{{4}^{2}}}{10\left( 3 \right)}=1680 \\
& \Rightarrow {{T}_{4}}=1680\times \dfrac{{{3}^{2}}}{9\left( 4 \right)}=420 \\
& \Rightarrow {{T}_{5}}=420\times \dfrac{{{2}^{2}}}{\left( 8 \right)\left( 5 \right)}=42 \\
& \Rightarrow {{T}_{6}}=42\times \dfrac{{{1}^{2}}}{7\left( 6 \right)}=1 \\
\end{align}$
Hence the sum equals $924-2772+3150-1680+420-42+1=1$.
Hence the sum of the series equals 1.
[2] Students often make a mistake by writing $^{12-r}{{C}_{6}}^{6}{{C}_{r}}{{=}^{12-r}}{{C}_{6-r}}^{6}{{C}_{r}}$ and equating it to the coefficient of ${{x}^{6}}$ in the expansion of ${{\left( 1+x \right)}^{6}}{{\left( 1-x \right)}^{12-r}}$, which is not correct and will yield incorrect results. There are many more terms responsible for the coefficient of ${{x}^{6}}$ in the expansion of ${{\left( 1+x \right)}^{6}}{{\left( 1-x \right)}^{12-r}}$ other than $^{12-r}{{C}_{6-r}}^{6}{{C}_{r}}$.
Complete step-by-step answer:
We know that $^{n}{{C}_{r}}=\dfrac{n!}{\left( n-r \right)!r!}$
Put n = 6, r =0, we get
$^{6}{{C}_{0}}=\dfrac{6!}{6!}=1$
Put n = 6, r = 1, we get
$^{6}{{C}_{1}}=6$
Put n = 6, r = 2, we get
$^{6}{{C}_{2}}=15$
Put n = 6, r = 3, we get
$^{6}{{C}_{3}}=20$
Similarly $^{6}{{C}_{4}}=15{{,}^{6}}{{C}_{5}}=6$ and $^{6}{{C}_{6}}=1$
Now put n = 12 and r = 6
$^{12}{{C}_{6}}=\dfrac{12!}{6!6!}=924$
Now, we have $\dfrac{^{n-1}{{C}_{r}}}{^{n}{{C}_{r}}}=\dfrac{n-r}{n}$
Hence, we have
$^{n-1}{{C}_{r}}=\dfrac{n-r}{n}{{\times }^{n}}{{C}_{r}}$
Using the above formula, we get
$\begin{align}
& ^{11}{{C}_{6}}=\dfrac{12-6}{12}{{\times }^{12}}{{C}_{6}}=\dfrac{6}{12}\times 924=462 \\
& {{\Rightarrow }^{10}}{{C}_{6}}=\dfrac{11-6}{11}{{\times }^{11}}{{C}_{6}}=\dfrac{5}{11}\times 462=210 \\
& {{\Rightarrow }^{9}}{{C}_{6}}=\dfrac{4}{10}\times 210=84 \\
& {{\Rightarrow }^{8}}{{C}_{6}}=\dfrac{3}{9}\times 84=28 \\
& {{\Rightarrow }^{7}}{{C}_{6}}=\dfrac{2}{8}\times 28=7 \\
& {{\Rightarrow }^{6}}{{C}_{6}}=\dfrac{7}{7}=1 \\
\end{align}$
Hence the given sum becomes
$924-462(6)+210(15)-84(20)+28(15)-7(6)+1(1) = 1$
Note: [1] Alternatively, we have
${{T}_{r}}{{=}^{6}}{{C}_{r}}^{12-r}{{C}_{6}}=\dfrac{6!}{\left( 6-r \right)!r!}\times \dfrac{\left( 12-r \right)!}{\left( 6-r \right)!6!}=\dfrac{\left( 12-r \right)!}{\left( 6-r \right)!\left( 6-r \right)!r!}$
Hence we have $\dfrac{{{T}_{r+1}}}{{{T}_{r}}}=\dfrac{{{\left( 6-r \right)}^{2}}}{\left( 12-r \right)\left( r+1 \right)}$
Now we have ${{T}_{0}}=\dfrac{12!}{6!6!}=924$
Hence, we have
$\begin{align}
& {{T}_{1}}=924\times \dfrac{{{6}^{2}}}{12}=2772 \\
& \Rightarrow {{T}_{2}}=2772\times \dfrac{{{5}^{2}}}{\left( 11 \right)\left( 2 \right)}=3150 \\
& \Rightarrow {{T}_{3}}=3150\times \dfrac{{{4}^{2}}}{10\left( 3 \right)}=1680 \\
& \Rightarrow {{T}_{4}}=1680\times \dfrac{{{3}^{2}}}{9\left( 4 \right)}=420 \\
& \Rightarrow {{T}_{5}}=420\times \dfrac{{{2}^{2}}}{\left( 8 \right)\left( 5 \right)}=42 \\
& \Rightarrow {{T}_{6}}=42\times \dfrac{{{1}^{2}}}{7\left( 6 \right)}=1 \\
\end{align}$
Hence the sum equals $924-2772+3150-1680+420-42+1=1$.
Hence the sum of the series equals 1.
[2] Students often make a mistake by writing $^{12-r}{{C}_{6}}^{6}{{C}_{r}}{{=}^{12-r}}{{C}_{6-r}}^{6}{{C}_{r}}$ and equating it to the coefficient of ${{x}^{6}}$ in the expansion of ${{\left( 1+x \right)}^{6}}{{\left( 1-x \right)}^{12-r}}$, which is not correct and will yield incorrect results. There are many more terms responsible for the coefficient of ${{x}^{6}}$ in the expansion of ${{\left( 1+x \right)}^{6}}{{\left( 1-x \right)}^{12-r}}$ other than $^{12-r}{{C}_{6-r}}^{6}{{C}_{r}}$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

