
Find the value of $ 2{{i}^{15}}+3{{i}^{6}} $.
Answer
587.1k+ views
Hint: In this problem, all the powers are for $ i $ . So, first we will write all these powers in the form of $ {{i}^{4}} $ and then we will evaluate the given expression. In this way we can easily solve this problem. We will be using the following properties of complex numbers to solve this problem,
$ \begin{align}
& \Rightarrow i=\sqrt{-1} \\
& \Rightarrow {{i}^{2}}=-1 \\
& \Rightarrow {{i}^{3}}=({{i}^{2}}\times i)=(-1\times i) \\
& \Rightarrow {{i}^{3}}=-i \\
& \Rightarrow {{\left( {{i}^{2}} \right)}^{2}}={{i}^{4}}=1 \\
\end{align} $
Complete step-by-step answer:
In this problem we have,
$ \Rightarrow 2{{i}^{15}}+3{{i}^{6}}.......(i) $
First we will write all powers of $ i $ that is, $ {{i}^{15}} $ and $ {{i}^{6}} $ in the terms of $ {{i}^{4}} $ .
We know that, when 15 is divided by 4 we get 3 as quotient and 3 as remainder.
$ \Rightarrow 15=(4\times 3)+3.......(ii) $
Similarly, when 6 is divided by 4 we get 1 as quotient and 2 as remainder.
\[\Rightarrow 6=(4\times 1)+2.....(iii)\]
From equation (i) and equation (ii) we can write $ {{i}^{15}} $ and $ {{i}^{6}} $ as,
$ \begin{align}
& \Rightarrow {{i}^{15}}={{({{i}^{4}})}^{3}}\times {{i}^{3}}........(iv) \\
& \Rightarrow {{i}^{6}}={{i}^{4}}\times {{i}^{2}}.......(v) \\
\end{align} $
Substituting the above equations (iv) and (v) in equation (i) we get,
$ \Rightarrow 2{{i}^{15}}+3{{i}^{6}}=2{{({{i}^{4}})}^{3}}\times {{i}^{3}}+3({{i}^{4}})\times {{i}^{2}}........(vii) $
Now, we know that,
$ \begin{align}
& \Rightarrow i=\sqrt{-1} \\
& \Rightarrow {{i}^{2}}=-1........(viii) \\
& \Rightarrow {{i}^{3}}=({{i}^{2}}\times i)=(-1\times i) \\
\end{align} $
\[\begin{align}
& \Rightarrow {{i}^{3}}=-i.......(ix) \\
& \Rightarrow {{({{i}^{2}})}^{2}}={{i}^{4}}=1.......(x) \\
\end{align}\]
Now, substituting values from equation (viii), equation (ix) and equation (x) in equation (vii), we get,
$ \Rightarrow 2{{i}^{15}}+3{{i}^{6}}=2({{(1)}^{3}}\times -i)+3(1\times -1) $
Simplifying the above equation, we get,
$ \begin{align}
& \Rightarrow 2{{i}^{15}}+3{{i}^{6}}=(2\times -i)+3(1\times -1) \\
& \Rightarrow 2{{i}^{15}}+3{{i}^{6}}=-2i-3......(xi) \\
\end{align} $
In equation (xi) we get the answer as $ -2i-3 $ . A complex number $ Z $ is represented as, $ Z=a+ib $ .
Here, $ a $ is the real part and $ b $ is the imaginary part. Now, comparing this with equation (xi), we can rewrite the answer as,
$ \Rightarrow -3-2i......(xii) $
Hence, the correct answer is $ -3-2i $.
Note: The main idea of this problem is the usage of properties of complex numbers. The properties used in this problem are:
$ \begin{align}
& \Rightarrow i=\sqrt{-1} \\
& \Rightarrow {{i}^{2}}=-1 \\
& \Rightarrow {{i}^{3}}=({{i}^{2}}\times i)=(-1\times i) \\
& \Rightarrow {{i}^{3}}=-i \\
& \Rightarrow {{\left( {{i}^{2}} \right)}^{2}}={{i}^{4}}=1 \\
\end{align} $
Here, in this question all the powers of $ i $ are greater than 4. Then this problem can be solved in another way. We can represent the value of $ {{i}^{n}} $ for $ n>4 $ , as $ {{i}^{r}} $ . Here, $ r $ is the remainder when $ n $ is divided by 4. This can be written as,
$ \begin{align}
& \Rightarrow 2{{i}^{15}}+3{{i}^{6}}=2{{i}^{3}}+3{{i}^{2}} \\
& \Rightarrow 2{{i}^{15}}+3{{i}^{6}}=2\left( -i \right)+3\left( -1 \right) \\
& \Rightarrow 2{{i}^{15}}+3{{i}^{6}}=-2i-3=-3-2i. \\
\end{align} $
$ \begin{align}
& \Rightarrow i=\sqrt{-1} \\
& \Rightarrow {{i}^{2}}=-1 \\
& \Rightarrow {{i}^{3}}=({{i}^{2}}\times i)=(-1\times i) \\
& \Rightarrow {{i}^{3}}=-i \\
& \Rightarrow {{\left( {{i}^{2}} \right)}^{2}}={{i}^{4}}=1 \\
\end{align} $
Complete step-by-step answer:
In this problem we have,
$ \Rightarrow 2{{i}^{15}}+3{{i}^{6}}.......(i) $
First we will write all powers of $ i $ that is, $ {{i}^{15}} $ and $ {{i}^{6}} $ in the terms of $ {{i}^{4}} $ .
We know that, when 15 is divided by 4 we get 3 as quotient and 3 as remainder.
$ \Rightarrow 15=(4\times 3)+3.......(ii) $
Similarly, when 6 is divided by 4 we get 1 as quotient and 2 as remainder.
\[\Rightarrow 6=(4\times 1)+2.....(iii)\]
From equation (i) and equation (ii) we can write $ {{i}^{15}} $ and $ {{i}^{6}} $ as,
$ \begin{align}
& \Rightarrow {{i}^{15}}={{({{i}^{4}})}^{3}}\times {{i}^{3}}........(iv) \\
& \Rightarrow {{i}^{6}}={{i}^{4}}\times {{i}^{2}}.......(v) \\
\end{align} $
Substituting the above equations (iv) and (v) in equation (i) we get,
$ \Rightarrow 2{{i}^{15}}+3{{i}^{6}}=2{{({{i}^{4}})}^{3}}\times {{i}^{3}}+3({{i}^{4}})\times {{i}^{2}}........(vii) $
Now, we know that,
$ \begin{align}
& \Rightarrow i=\sqrt{-1} \\
& \Rightarrow {{i}^{2}}=-1........(viii) \\
& \Rightarrow {{i}^{3}}=({{i}^{2}}\times i)=(-1\times i) \\
\end{align} $
\[\begin{align}
& \Rightarrow {{i}^{3}}=-i.......(ix) \\
& \Rightarrow {{({{i}^{2}})}^{2}}={{i}^{4}}=1.......(x) \\
\end{align}\]
Now, substituting values from equation (viii), equation (ix) and equation (x) in equation (vii), we get,
$ \Rightarrow 2{{i}^{15}}+3{{i}^{6}}=2({{(1)}^{3}}\times -i)+3(1\times -1) $
Simplifying the above equation, we get,
$ \begin{align}
& \Rightarrow 2{{i}^{15}}+3{{i}^{6}}=(2\times -i)+3(1\times -1) \\
& \Rightarrow 2{{i}^{15}}+3{{i}^{6}}=-2i-3......(xi) \\
\end{align} $
In equation (xi) we get the answer as $ -2i-3 $ . A complex number $ Z $ is represented as, $ Z=a+ib $ .
Here, $ a $ is the real part and $ b $ is the imaginary part. Now, comparing this with equation (xi), we can rewrite the answer as,
$ \Rightarrow -3-2i......(xii) $
Hence, the correct answer is $ -3-2i $.
Note: The main idea of this problem is the usage of properties of complex numbers. The properties used in this problem are:
$ \begin{align}
& \Rightarrow i=\sqrt{-1} \\
& \Rightarrow {{i}^{2}}=-1 \\
& \Rightarrow {{i}^{3}}=({{i}^{2}}\times i)=(-1\times i) \\
& \Rightarrow {{i}^{3}}=-i \\
& \Rightarrow {{\left( {{i}^{2}} \right)}^{2}}={{i}^{4}}=1 \\
\end{align} $
Here, in this question all the powers of $ i $ are greater than 4. Then this problem can be solved in another way. We can represent the value of $ {{i}^{n}} $ for $ n>4 $ , as $ {{i}^{r}} $ . Here, $ r $ is the remainder when $ n $ is divided by 4. This can be written as,
$ \begin{align}
& \Rightarrow 2{{i}^{15}}+3{{i}^{6}}=2{{i}^{3}}+3{{i}^{2}} \\
& \Rightarrow 2{{i}^{15}}+3{{i}^{6}}=2\left( -i \right)+3\left( -1 \right) \\
& \Rightarrow 2{{i}^{15}}+3{{i}^{6}}=-2i-3=-3-2i. \\
\end{align} $
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Draw ray diagrams each showing i myopic eye and ii class 12 physics CBSE

When was the first election held in India a 194748 class 12 sst CBSE

