
How would you find the unit vector along the line joining point $(2,4,4)$ to point $(-3,2,2)$?
Answer
543.6k+ views
Hint: A vector is an object that has both a magnitude and a direction. In this we need to find the unit vector of the line joining points. Unit vector refers to the normal vector space of length 1. First we need to represent points in vector form. Then with given points we have form position vector and then we substitute in unit vector formula. Unit vector is the ratio of the vector to the magnitude of the vector.
Formula used: Unit vector in the direction of \[\overrightarrow {{\text{AB}}} = \dfrac{1}{{\left| {\overrightarrow {{\text{AB}}} } \right|}} \times \overrightarrow {{\text{AB}}} \]
\[\left| {\overrightarrow {{\text{AB}}} } \right| = \sqrt {{{(\overrightarrow i )}^2} + {{(\overrightarrow j )}^2} + {{(\overrightarrow k )}^2}} \]
Complete step-by-step solution:
Let us consider points A(2,4,4) and B(-3,2,2)
Now convert the points into position vector
\[\overrightarrow {{\text{OA}}} = 2\overrightarrow i + 4\overrightarrow j + 4\overrightarrow k \]
\[\overrightarrow {{\text{OB}}} = - 3\overrightarrow i + 2\overrightarrow j + 2\overrightarrow k \]
Now we need to find the director of $\overrightarrow {{\text{AB}}} $ is
\[\overrightarrow {{\text{AB }}} {\text{ = (}} - 3\overrightarrow i + 2\overrightarrow j + 2\overrightarrow k ) - (2\overrightarrow i + 4\overrightarrow j + 4\overrightarrow k )\]
Now we need to subtract the position vectors.
\[\overrightarrow {{\text{AB }}} {\text{ = (}} - 3\overrightarrow i - 2\overrightarrow i + 2\overrightarrow j - 4\overrightarrow j + 2\overrightarrow k - 4\overrightarrow k )\]
\[\overrightarrow {{\text{AB }}} {\text{ = (}} - 5\overrightarrow i - 2\overrightarrow j - 2\overrightarrow k )\]
Now applying unit formula mentioned in formula used, we get
Unit vector in the direction of \[\overrightarrow {{\text{AB}}} = \dfrac{1}{{\left| { - 5\overrightarrow i - 2\overrightarrow j - 2\overrightarrow k } \right|}} \times {\text{(}} - 5\overrightarrow i - 2\overrightarrow j - 2\overrightarrow k )\]
By applying vector multiplication, we get
\[\left| {\overrightarrow {{\text{AB}}} } \right| = \sqrt {25 + 4 + 4} \]
\[\left| {\overrightarrow {{\text{AB}}} } \right| = \sqrt {33} \]
Now, the unit vector of direction \[\overrightarrow {{\text{AB}}} \]is
\[{\text{Unit Vector in the direction of }}\overrightarrow {{\text{AB}}} = \dfrac{1}{{\sqrt {33} }} \times {\text{(}} - 5\overrightarrow i - 2\overrightarrow j - 2\overrightarrow k )\]
\[\overrightarrow {{\text{AB}}} = - \dfrac{5}{{\sqrt {33} }}\overrightarrow i - \dfrac{2}{{\sqrt {33} }}\overrightarrow j - \dfrac{2}{{\sqrt {33} }}\overrightarrow k \]
Thus we obtain the unit vector along the line joining point (2,4,4) to point (-3,2,2) is
\[\overrightarrow {{\text{AB}}} = - \dfrac{5}{{\sqrt {33} }}\overrightarrow i - \dfrac{2}{{\sqrt {33} }}\overrightarrow j - \dfrac{2}{{\sqrt {33} }}\overrightarrow k \]
Note: In this problem we also have vector subtraction and multiplication. Vector subtraction is the process of taking vector difference and is the inverse operation to vector addition. Here comes dot product of vector multiplication. The dot product between a unit vector and itself is also simple to compute. In this case the angle is zero and 1. Given that the vectors are all of length one, the dot products are $i \times i = j \times j = k \times k = 1$. Then we solve by square and square root methods and basic mathematical calculation.
Formula used: Unit vector in the direction of \[\overrightarrow {{\text{AB}}} = \dfrac{1}{{\left| {\overrightarrow {{\text{AB}}} } \right|}} \times \overrightarrow {{\text{AB}}} \]
\[\left| {\overrightarrow {{\text{AB}}} } \right| = \sqrt {{{(\overrightarrow i )}^2} + {{(\overrightarrow j )}^2} + {{(\overrightarrow k )}^2}} \]
Complete step-by-step solution:
Let us consider points A(2,4,4) and B(-3,2,2)
Now convert the points into position vector
\[\overrightarrow {{\text{OA}}} = 2\overrightarrow i + 4\overrightarrow j + 4\overrightarrow k \]
\[\overrightarrow {{\text{OB}}} = - 3\overrightarrow i + 2\overrightarrow j + 2\overrightarrow k \]
Now we need to find the director of $\overrightarrow {{\text{AB}}} $ is
\[\overrightarrow {{\text{AB }}} {\text{ = (}} - 3\overrightarrow i + 2\overrightarrow j + 2\overrightarrow k ) - (2\overrightarrow i + 4\overrightarrow j + 4\overrightarrow k )\]
Now we need to subtract the position vectors.
\[\overrightarrow {{\text{AB }}} {\text{ = (}} - 3\overrightarrow i - 2\overrightarrow i + 2\overrightarrow j - 4\overrightarrow j + 2\overrightarrow k - 4\overrightarrow k )\]
\[\overrightarrow {{\text{AB }}} {\text{ = (}} - 5\overrightarrow i - 2\overrightarrow j - 2\overrightarrow k )\]
Now applying unit formula mentioned in formula used, we get
Unit vector in the direction of \[\overrightarrow {{\text{AB}}} = \dfrac{1}{{\left| { - 5\overrightarrow i - 2\overrightarrow j - 2\overrightarrow k } \right|}} \times {\text{(}} - 5\overrightarrow i - 2\overrightarrow j - 2\overrightarrow k )\]
By applying vector multiplication, we get
\[\left| {\overrightarrow {{\text{AB}}} } \right| = \sqrt {25 + 4 + 4} \]
\[\left| {\overrightarrow {{\text{AB}}} } \right| = \sqrt {33} \]
Now, the unit vector of direction \[\overrightarrow {{\text{AB}}} \]is
\[{\text{Unit Vector in the direction of }}\overrightarrow {{\text{AB}}} = \dfrac{1}{{\sqrt {33} }} \times {\text{(}} - 5\overrightarrow i - 2\overrightarrow j - 2\overrightarrow k )\]
\[\overrightarrow {{\text{AB}}} = - \dfrac{5}{{\sqrt {33} }}\overrightarrow i - \dfrac{2}{{\sqrt {33} }}\overrightarrow j - \dfrac{2}{{\sqrt {33} }}\overrightarrow k \]
Thus we obtain the unit vector along the line joining point (2,4,4) to point (-3,2,2) is
\[\overrightarrow {{\text{AB}}} = - \dfrac{5}{{\sqrt {33} }}\overrightarrow i - \dfrac{2}{{\sqrt {33} }}\overrightarrow j - \dfrac{2}{{\sqrt {33} }}\overrightarrow k \]
Note: In this problem we also have vector subtraction and multiplication. Vector subtraction is the process of taking vector difference and is the inverse operation to vector addition. Here comes dot product of vector multiplication. The dot product between a unit vector and itself is also simple to compute. In this case the angle is zero and 1. Given that the vectors are all of length one, the dot products are $i \times i = j \times j = k \times k = 1$. Then we solve by square and square root methods and basic mathematical calculation.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

