
Find the term independent of x in\[{{\left( 2{{x}^{\dfrac{1}{2}}}-3{{x}^{-\dfrac{1}{3}}} \right)}^{20}}\]. Choose the correct option,
A. \[{}^{20}{{C}_{8}}\bullet {{6}^{8}}\bullet {{2}^{4}}\]
B. \[{}^{20}{{C}_{8}}\bullet {{2}^{8}}\bullet {{3}^{8}}\]
C. \[{}^{20}{{C}_{8}}\bullet {{6}^{8}}\bullet {{3}^{4}}\]
D. \[{}^{20}{{C}_{12}}\bullet {{6}^{12}}\]
Answer
597k+ views
Hint: Expand the given expression using the expansion formula\[{{\left( a+b \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}}{{a}^{\left( n-r \right)}}{{b}^{r}}\]. Here \[a=2{{x}^{\dfrac{1}{2}}},\,\,b=3{{x}^{-\dfrac{1}{3}}}\]and \[n=20\]. Next, we know that the \[r+1\]th term of this expansion is given as: \[{{T}_{r+1}}={}^{n}{{C}_{r}}{{a}^{\left( n-r \right)}}{{b}^{r}}\]. So here we have to find the total power of x in terms of r, and then make this total power zero (i.e, \[{{x}^{0}}\] ) in order to find the value of r. Then we can find the term and the value of that term which is independent of x.
Complete step-by-step answer:
In the question, we have to find the term independent of x in the expansion of \[{{\left( 2{{x}^{\dfrac{1}{2}}}-3{{x}^{-\dfrac{1}{3}}} \right)}^{20}}\].
So here we can use the binomial expansion. The binomial expansion of expression of the form \[{{\left( a+b \right)}^{n}}\]is given as\[{{\left( a+b \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}}{{a}^{\left( n-r \right)}}{{b}^{r}}\]. Here a and b can be a variable or a constant. And the power n can be an integer or a fraction. Now, the expression that we have is \[{{\left( 2{{x}^{\dfrac{1}{2}}}-3{{x}^{-\dfrac{1}{3}}} \right)}^{20}}\]. So on comparing with the form \[{{\left( a+b \right)}^{n}}\] we get \[a=2{{x}^{\dfrac{1}{2}}},\,\,b=3{{x}^{-\dfrac{1}{3}}}\]and \[n=20\]. So now when we expand the expression, we have:
\[\begin{align}
& \Rightarrow {{\left( a+b \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}}{{a}^{\left( n-r \right)}}{{b}^{r}} \\
& \Rightarrow {{\left( 2{{x}^{\dfrac{1}{2}}}-3{{x}^{-\dfrac{1}{3}}} \right)}^{20}}=\sum\limits_{r=0}^{20}{{}^{20}{{C}_{r}}}{{\left( 2{{x}^{\dfrac{1}{2}}} \right)}^{\left( 20-r \right)}}{{\left( 3{{x}^{-\dfrac{1}{3}}} \right)}^{r}} \\
\end{align}\]
Next, we need to find the power of x in the expression \[{{\left( 2{{x}^{\dfrac{1}{2}}} \right)}^{\left( 20-r \right)}}{{\left( 3{{x}^{-\dfrac{1}{3}}} \right)}^{r}}\]. So that is calculated as follows:
\[\begin{align}
& \Rightarrow \left( {{x}^{\dfrac{20-r}{2}}} \right)\left( {{x}^{-\dfrac{r}{3}}} \right) \\
& \Rightarrow {{x}^{\dfrac{20-r}{2}-\dfrac{r}{3}}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\because {{x}^{a}}\times {{x}^{b}}={{x}^{a+b}} \\
& \Rightarrow {{x}^{\dfrac{60-3r-2r}{6}}} \\
& \Rightarrow {{x}^{\dfrac{60-5r}{6}}} \\
\end{align}\]
Now, the power of x is zero, when we have:
\[\begin{align}
& \Rightarrow {{x}^{\dfrac{60-5r}{6}}}={{x}^{0}} \\
& \Rightarrow \dfrac{60-5r}{6}=0 \\
& \Rightarrow 60-5r=0 \\
& \Rightarrow r=12 \\
\end{align}\]
So this means that \[r=12\]. Next, we know that the \[r+1\]th term of this expansion is given as: \[\begin{align}
& \Rightarrow {{T}_{r+1}}={}^{n}{{C}_{r}}{{a}^{\left( n-r \right)}}{{b}^{r}} \\
& \Rightarrow {{T}_{r+1}}={}^{20}{{C}_{r}}{{\left( 2{{x}^{\dfrac{1}{2}}} \right)}^{\left( 20-r \right)}}{{\left( 3{{x}^{-\dfrac{1}{3}}} \right)}^{r}} \\
\end{align}\].
So, we have \[r+1=13\]th term that is independent of x. Now, the value of this term when \[r=12\] is;
\[\begin{align}
& \Rightarrow {{T}_{12+1}}={}^{20}{{C}_{12}}{{\left( 2{{x}^{\dfrac{1}{2}}} \right)}^{\left( 20-12 \right)}}{{\left( 3{{x}^{-\dfrac{1}{3}}} \right)}^{12}} \\
& \Rightarrow {{T}_{13}}={}^{20}{{C}_{12}}{{\left( 2 \right)}^{\left( 20-12 \right)}}{{\left( 3 \right)}^{12}}{{x}^{0}} \\
& \Rightarrow {{T}_{13}}={}^{20}{{C}_{12}}{{\left( 2 \right)}^{\left( 8 \right)}}{{\left( 3 \right)}^{12}} \\
\end{align}\]
Next, we know that \[{}^{n}{{C}_{r}}={}^{n}{{C}_{n-r}}\]so we can write
\[\begin{align}
& \Rightarrow {{T}_{13}}={}^{20}{{C}_{12}}{{\left( 2 \right)}^{\left( 8 \right)}}{{\left( 3 \right)}^{12}} \\
& \Rightarrow {{T}_{13}}={}^{20}{{C}_{20-12}}{{\left( 2 \right)}^{\left( 8 \right)}}{{\left( 3 \right)}^{12}} \\
& \Rightarrow {{T}_{13}}={}^{20}{{C}_{8}}{{\left( 6 \right)}^{\left( 8 \right)}}{{\left( 3 \right)}^{4}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\because {{\left( 2 \right)}^{\left( 8 \right)}}{{\left( 3 \right)}^{\left( 8 \right)}}={{\left( 6 \right)}^{\left( 8 \right)}} \\
\end{align}\]
So here we see that the value of the 13 th term is independent of x and is \[{}^{20}{{C}_{8}}{{\left( 6 \right)}^{\left( 8 \right)}}{{\left( 3 \right)}^{4}}\]. Hence the correct answer is option C.
Note: The general term of the expansion of the form \[{{\left( a+b \right)}^{n}}\] does not represent the r th term but r+1 th term. Also, we have to be careful to find the total power and then make it zero to find the term independent of x. Also, we are applying the exponent rule \[{{x}^{a}}\times {{x}^{b}}={{x}^{a+b}}\], then we have to be careful with the negative powers.
Complete step-by-step answer:
In the question, we have to find the term independent of x in the expansion of \[{{\left( 2{{x}^{\dfrac{1}{2}}}-3{{x}^{-\dfrac{1}{3}}} \right)}^{20}}\].
So here we can use the binomial expansion. The binomial expansion of expression of the form \[{{\left( a+b \right)}^{n}}\]is given as\[{{\left( a+b \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}}{{a}^{\left( n-r \right)}}{{b}^{r}}\]. Here a and b can be a variable or a constant. And the power n can be an integer or a fraction. Now, the expression that we have is \[{{\left( 2{{x}^{\dfrac{1}{2}}}-3{{x}^{-\dfrac{1}{3}}} \right)}^{20}}\]. So on comparing with the form \[{{\left( a+b \right)}^{n}}\] we get \[a=2{{x}^{\dfrac{1}{2}}},\,\,b=3{{x}^{-\dfrac{1}{3}}}\]and \[n=20\]. So now when we expand the expression, we have:
\[\begin{align}
& \Rightarrow {{\left( a+b \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}}{{a}^{\left( n-r \right)}}{{b}^{r}} \\
& \Rightarrow {{\left( 2{{x}^{\dfrac{1}{2}}}-3{{x}^{-\dfrac{1}{3}}} \right)}^{20}}=\sum\limits_{r=0}^{20}{{}^{20}{{C}_{r}}}{{\left( 2{{x}^{\dfrac{1}{2}}} \right)}^{\left( 20-r \right)}}{{\left( 3{{x}^{-\dfrac{1}{3}}} \right)}^{r}} \\
\end{align}\]
Next, we need to find the power of x in the expression \[{{\left( 2{{x}^{\dfrac{1}{2}}} \right)}^{\left( 20-r \right)}}{{\left( 3{{x}^{-\dfrac{1}{3}}} \right)}^{r}}\]. So that is calculated as follows:
\[\begin{align}
& \Rightarrow \left( {{x}^{\dfrac{20-r}{2}}} \right)\left( {{x}^{-\dfrac{r}{3}}} \right) \\
& \Rightarrow {{x}^{\dfrac{20-r}{2}-\dfrac{r}{3}}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\because {{x}^{a}}\times {{x}^{b}}={{x}^{a+b}} \\
& \Rightarrow {{x}^{\dfrac{60-3r-2r}{6}}} \\
& \Rightarrow {{x}^{\dfrac{60-5r}{6}}} \\
\end{align}\]
Now, the power of x is zero, when we have:
\[\begin{align}
& \Rightarrow {{x}^{\dfrac{60-5r}{6}}}={{x}^{0}} \\
& \Rightarrow \dfrac{60-5r}{6}=0 \\
& \Rightarrow 60-5r=0 \\
& \Rightarrow r=12 \\
\end{align}\]
So this means that \[r=12\]. Next, we know that the \[r+1\]th term of this expansion is given as: \[\begin{align}
& \Rightarrow {{T}_{r+1}}={}^{n}{{C}_{r}}{{a}^{\left( n-r \right)}}{{b}^{r}} \\
& \Rightarrow {{T}_{r+1}}={}^{20}{{C}_{r}}{{\left( 2{{x}^{\dfrac{1}{2}}} \right)}^{\left( 20-r \right)}}{{\left( 3{{x}^{-\dfrac{1}{3}}} \right)}^{r}} \\
\end{align}\].
So, we have \[r+1=13\]th term that is independent of x. Now, the value of this term when \[r=12\] is;
\[\begin{align}
& \Rightarrow {{T}_{12+1}}={}^{20}{{C}_{12}}{{\left( 2{{x}^{\dfrac{1}{2}}} \right)}^{\left( 20-12 \right)}}{{\left( 3{{x}^{-\dfrac{1}{3}}} \right)}^{12}} \\
& \Rightarrow {{T}_{13}}={}^{20}{{C}_{12}}{{\left( 2 \right)}^{\left( 20-12 \right)}}{{\left( 3 \right)}^{12}}{{x}^{0}} \\
& \Rightarrow {{T}_{13}}={}^{20}{{C}_{12}}{{\left( 2 \right)}^{\left( 8 \right)}}{{\left( 3 \right)}^{12}} \\
\end{align}\]
Next, we know that \[{}^{n}{{C}_{r}}={}^{n}{{C}_{n-r}}\]so we can write
\[\begin{align}
& \Rightarrow {{T}_{13}}={}^{20}{{C}_{12}}{{\left( 2 \right)}^{\left( 8 \right)}}{{\left( 3 \right)}^{12}} \\
& \Rightarrow {{T}_{13}}={}^{20}{{C}_{20-12}}{{\left( 2 \right)}^{\left( 8 \right)}}{{\left( 3 \right)}^{12}} \\
& \Rightarrow {{T}_{13}}={}^{20}{{C}_{8}}{{\left( 6 \right)}^{\left( 8 \right)}}{{\left( 3 \right)}^{4}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\because {{\left( 2 \right)}^{\left( 8 \right)}}{{\left( 3 \right)}^{\left( 8 \right)}}={{\left( 6 \right)}^{\left( 8 \right)}} \\
\end{align}\]
So here we see that the value of the 13 th term is independent of x and is \[{}^{20}{{C}_{8}}{{\left( 6 \right)}^{\left( 8 \right)}}{{\left( 3 \right)}^{4}}\]. Hence the correct answer is option C.
Note: The general term of the expansion of the form \[{{\left( a+b \right)}^{n}}\] does not represent the r th term but r+1 th term. Also, we have to be careful to find the total power and then make it zero to find the term independent of x. Also, we are applying the exponent rule \[{{x}^{a}}\times {{x}^{b}}={{x}^{a+b}}\], then we have to be careful with the negative powers.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

