
Find the symmetric and skew-symmetric parts of a matrix.
\[A=\left( \begin{matrix}
1 & 2 & 4 \\
6 & 8 & 1 \\
3 & 5 & 7 \\
\end{matrix} \right)\]
Answer
583.8k+ views
Hint: We can write a matrix A as the sum of \[\dfrac{A+{{A}^{T}}}{2}\] and \[\dfrac{A-{{A}^{T}}}{2}\] where \[\dfrac{A+{{A}^{T}}}{2}\] is symmetric part of the matrix A and \[\dfrac{A-{{A}^{T}}}{2}\] is skew-symmetric part of matrix A. Now we have to find the value of \[{{A}^{T}}\]. \[{{A}^{T}}\] represents a transpose of a matrix. A transpose of a matrix is obtained by interchanging the rows and columns of matrix A. By using \[{{A}^{T}}\], we can find the symmetric and skew-symmetric parts of matrix A.
Complete step-by-step answer:
We know that a matrix can be written as the sum of symmetric matrix and skew-symmetric matrix.
We can rewrite a matrix A as follows:
\[A=\dfrac{A}{2}+\dfrac{A}{2}\]
Now add and subtract \[\dfrac{{{A}^{T}}}{2}\]on R.H.S where \[{{A}^{T}}\]is transpose of matrix A.
\[\Rightarrow A=\dfrac{A+{{A}^{T}}}{2}+\dfrac{A-{{A}^{T}}}{2}\]
Let us assume \[\dfrac{A+{{A}^{T}}}{2}\] as B and \[\dfrac{A-{{A}^{T}}}{2}\]as C.
\[\Rightarrow A=B+C....(1)\]
We know that a matrix A is said to be symmetric if \[A={{A}^{T}}\].
We know that
\[\Rightarrow B=\dfrac{A+{{A}^{T}}}{2}\]
Now we will apply transpose on both sides.
\[\begin{align}
& \Rightarrow {{B}^{T}}={{\left( \dfrac{A+{{A}^{T}}}{2} \right)}^{T}} \\
& \Rightarrow {{B}^{T}}=\dfrac{{{A}^{T}}+{{\left( {{A}^{T}} \right)}^{T}}}{2} \\
& \Rightarrow {{B}^{T}}=\dfrac{A+{{A}^{T}}}{2} \\
& \Rightarrow {{B}^{T}}=B \\
\end{align}\]
So, we can say that B is a symmetric matrix.
\[\Rightarrow B=\left( \dfrac{A-{{A}^{T}}}{2} \right)\]
Now we will apply transpose on both sides.
\[\begin{align}
& \Rightarrow {{B}^{T}}={{\left( \dfrac{A-{{A}^{T}}}{2} \right)}^{T}} \\
& \Rightarrow {{B}^{T}}=\dfrac{{{A}^{T}}-{{\left( {{A}^{T}} \right)}^{T}}}{2} \\
& \Rightarrow {{B}^{T}}=\dfrac{{{A}^{T}}-A}{2} \\
& \Rightarrow {{B}^{T}}=-B \\
\end{align}\]
So, we can say that B is a skew symmetric matrix.
So, we can write a matrix A as the sum of a symmetric matrix and skew-symmetric matrix.
From the question, we were given that
\[A=\left( \begin{matrix}
1 & 2 & 4 \\
6 & 8 & 1 \\
3 & 5 & 7 \\
\end{matrix} \right)\]
We know that transpose of a matrix is obtained by interchanging the rows and columns of matrix A.
So, the transpose of A is
\[\Rightarrow {{A}^{T}}=\left( \begin{matrix}
1 & 6 & 3 \\
2 & 8 & 5 \\
4 & 1 & 7 \\
\end{matrix} \right)\]
We know that the symmetric part of a matrix is equal to \[\dfrac{A+{{A}^{T}}}{2}\].
\[\Rightarrow \dfrac{A+{{A}^{T}}}{2}=\dfrac{\left( \begin{matrix}
1 & 2 & 4 \\
6 & 8 & 1 \\
3 & 5 & 7 \\
\end{matrix} \right)+\left( \begin{matrix}
1 & 6 & 3 \\
2 & 8 & 5 \\
4 & 1 & 7 \\
\end{matrix} \right)}{2}\]
\[\Rightarrow \dfrac{A+{{A}^{T}}}{2}=\dfrac{\left( \begin{matrix}
2 & 8 & 7 \\
8 & 16 & 6 \\
7 & 6 & 14 \\
\end{matrix} \right)}{2}\]
\[\Rightarrow \dfrac{A+{{A}^{T}}}{2}=\left( \begin{matrix}
1 & 6 & \dfrac{7}{2} \\
4 & 8 & 3 \\
\dfrac{7}{2} & 3 & 7 \\
\end{matrix} \right)\]
So, the symmetric part of matrix A is equal to \[\left( \begin{matrix}
1 & 6 & \dfrac{7}{2} \\
4 & 8 & 3 \\
\dfrac{7}{2} & 3 & 7 \\
\end{matrix} \right)\].
We know that the skew-symmetric part of a matrix is equal to \[\dfrac{A-{{A}^{T}}}{2}\].
\[\Rightarrow \dfrac{A-{{A}^{T}}}{2}=\dfrac{\left( \begin{matrix}
1 & 2 & 4 \\
6 & 8 & 1 \\
3 & 5 & 7 \\
\end{matrix} \right)-\left( \begin{matrix}
1 & 6 & 3 \\
2 & 8 & 5 \\
4 & 1 & 7 \\
\end{matrix} \right)}{2}\]
\[\Rightarrow \dfrac{A+{{A}^{T}}}{2}=\dfrac{\left( \begin{matrix}
0 & -4 & 1 \\
4 & 0 & -4 \\
-1 & 4 & 0 \\
\end{matrix} \right)}{2}\]
So, skew-symmetric part of matrix A is equal to \[\dfrac{\left( \begin{matrix}
0 & -4 & 1 \\
4 & 0 & -4 \\
-1 & 4 & 0 \\
\end{matrix} \right)}{2}\].
Note: Some students have a misconception that that a matrix A said to be symmetric if \[A=-{{A}^{T}}\] and that a matrix A said to be skew-symmetric if \[A={{A}^{T}}\]. If this misconception is followed, then the symmetric part of A is \[\dfrac{\left( \begin{matrix}
0 & -4 & 1 \\
4 & 0 & -4 \\
-1 & 4 & 0 \\
\end{matrix} \right)}{2}\] and skew-symmetric part of A is \[\left( \begin{matrix}
1 & 6 & \dfrac{7}{2} \\
4 & 8 & 3 \\
\dfrac{7}{2} & 3 & 7 \\
\end{matrix} \right)\]. This is a very big mistake. So, students should have a clear view on symmetric and non-symmetric matrices.
Complete step-by-step answer:
We know that a matrix can be written as the sum of symmetric matrix and skew-symmetric matrix.
We can rewrite a matrix A as follows:
\[A=\dfrac{A}{2}+\dfrac{A}{2}\]
Now add and subtract \[\dfrac{{{A}^{T}}}{2}\]on R.H.S where \[{{A}^{T}}\]is transpose of matrix A.
\[\Rightarrow A=\dfrac{A+{{A}^{T}}}{2}+\dfrac{A-{{A}^{T}}}{2}\]
Let us assume \[\dfrac{A+{{A}^{T}}}{2}\] as B and \[\dfrac{A-{{A}^{T}}}{2}\]as C.
\[\Rightarrow A=B+C....(1)\]
We know that a matrix A is said to be symmetric if \[A={{A}^{T}}\].
We know that
\[\Rightarrow B=\dfrac{A+{{A}^{T}}}{2}\]
Now we will apply transpose on both sides.
\[\begin{align}
& \Rightarrow {{B}^{T}}={{\left( \dfrac{A+{{A}^{T}}}{2} \right)}^{T}} \\
& \Rightarrow {{B}^{T}}=\dfrac{{{A}^{T}}+{{\left( {{A}^{T}} \right)}^{T}}}{2} \\
& \Rightarrow {{B}^{T}}=\dfrac{A+{{A}^{T}}}{2} \\
& \Rightarrow {{B}^{T}}=B \\
\end{align}\]
So, we can say that B is a symmetric matrix.
\[\Rightarrow B=\left( \dfrac{A-{{A}^{T}}}{2} \right)\]
Now we will apply transpose on both sides.
\[\begin{align}
& \Rightarrow {{B}^{T}}={{\left( \dfrac{A-{{A}^{T}}}{2} \right)}^{T}} \\
& \Rightarrow {{B}^{T}}=\dfrac{{{A}^{T}}-{{\left( {{A}^{T}} \right)}^{T}}}{2} \\
& \Rightarrow {{B}^{T}}=\dfrac{{{A}^{T}}-A}{2} \\
& \Rightarrow {{B}^{T}}=-B \\
\end{align}\]
So, we can say that B is a skew symmetric matrix.
So, we can write a matrix A as the sum of a symmetric matrix and skew-symmetric matrix.
From the question, we were given that
\[A=\left( \begin{matrix}
1 & 2 & 4 \\
6 & 8 & 1 \\
3 & 5 & 7 \\
\end{matrix} \right)\]
We know that transpose of a matrix is obtained by interchanging the rows and columns of matrix A.
So, the transpose of A is
\[\Rightarrow {{A}^{T}}=\left( \begin{matrix}
1 & 6 & 3 \\
2 & 8 & 5 \\
4 & 1 & 7 \\
\end{matrix} \right)\]
We know that the symmetric part of a matrix is equal to \[\dfrac{A+{{A}^{T}}}{2}\].
\[\Rightarrow \dfrac{A+{{A}^{T}}}{2}=\dfrac{\left( \begin{matrix}
1 & 2 & 4 \\
6 & 8 & 1 \\
3 & 5 & 7 \\
\end{matrix} \right)+\left( \begin{matrix}
1 & 6 & 3 \\
2 & 8 & 5 \\
4 & 1 & 7 \\
\end{matrix} \right)}{2}\]
\[\Rightarrow \dfrac{A+{{A}^{T}}}{2}=\dfrac{\left( \begin{matrix}
2 & 8 & 7 \\
8 & 16 & 6 \\
7 & 6 & 14 \\
\end{matrix} \right)}{2}\]
\[\Rightarrow \dfrac{A+{{A}^{T}}}{2}=\left( \begin{matrix}
1 & 6 & \dfrac{7}{2} \\
4 & 8 & 3 \\
\dfrac{7}{2} & 3 & 7 \\
\end{matrix} \right)\]
So, the symmetric part of matrix A is equal to \[\left( \begin{matrix}
1 & 6 & \dfrac{7}{2} \\
4 & 8 & 3 \\
\dfrac{7}{2} & 3 & 7 \\
\end{matrix} \right)\].
We know that the skew-symmetric part of a matrix is equal to \[\dfrac{A-{{A}^{T}}}{2}\].
\[\Rightarrow \dfrac{A-{{A}^{T}}}{2}=\dfrac{\left( \begin{matrix}
1 & 2 & 4 \\
6 & 8 & 1 \\
3 & 5 & 7 \\
\end{matrix} \right)-\left( \begin{matrix}
1 & 6 & 3 \\
2 & 8 & 5 \\
4 & 1 & 7 \\
\end{matrix} \right)}{2}\]
\[\Rightarrow \dfrac{A+{{A}^{T}}}{2}=\dfrac{\left( \begin{matrix}
0 & -4 & 1 \\
4 & 0 & -4 \\
-1 & 4 & 0 \\
\end{matrix} \right)}{2}\]
So, skew-symmetric part of matrix A is equal to \[\dfrac{\left( \begin{matrix}
0 & -4 & 1 \\
4 & 0 & -4 \\
-1 & 4 & 0 \\
\end{matrix} \right)}{2}\].
Note: Some students have a misconception that that a matrix A said to be symmetric if \[A=-{{A}^{T}}\] and that a matrix A said to be skew-symmetric if \[A={{A}^{T}}\]. If this misconception is followed, then the symmetric part of A is \[\dfrac{\left( \begin{matrix}
0 & -4 & 1 \\
4 & 0 & -4 \\
-1 & 4 & 0 \\
\end{matrix} \right)}{2}\] and skew-symmetric part of A is \[\left( \begin{matrix}
1 & 6 & \dfrac{7}{2} \\
4 & 8 & 3 \\
\dfrac{7}{2} & 3 & 7 \\
\end{matrix} \right)\]. This is a very big mistake. So, students should have a clear view on symmetric and non-symmetric matrices.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

