
Find the symmetric and skew-symmetric parts of a matrix.
\[A=\left( \begin{matrix}
1 & 2 & 4 \\
6 & 8 & 1 \\
3 & 5 & 7 \\
\end{matrix} \right)\]
Answer
597.9k+ views
Hint: We can write a matrix A as the sum of \[\dfrac{A+{{A}^{T}}}{2}\] and \[\dfrac{A-{{A}^{T}}}{2}\] where \[\dfrac{A+{{A}^{T}}}{2}\] is symmetric part of the matrix A and \[\dfrac{A-{{A}^{T}}}{2}\] is skew-symmetric part of matrix A. Now we have to find the value of \[{{A}^{T}}\]. \[{{A}^{T}}\] represents a transpose of a matrix. A transpose of a matrix is obtained by interchanging the rows and columns of matrix A. By using \[{{A}^{T}}\], we can find the symmetric and skew-symmetric parts of matrix A.
Complete step-by-step answer:
We know that a matrix can be written as the sum of symmetric matrix and skew-symmetric matrix.
We can rewrite a matrix A as follows:
\[A=\dfrac{A}{2}+\dfrac{A}{2}\]
Now add and subtract \[\dfrac{{{A}^{T}}}{2}\]on R.H.S where \[{{A}^{T}}\]is transpose of matrix A.
\[\Rightarrow A=\dfrac{A+{{A}^{T}}}{2}+\dfrac{A-{{A}^{T}}}{2}\]
Let us assume \[\dfrac{A+{{A}^{T}}}{2}\] as B and \[\dfrac{A-{{A}^{T}}}{2}\]as C.
\[\Rightarrow A=B+C....(1)\]
We know that a matrix A is said to be symmetric if \[A={{A}^{T}}\].
We know that
\[\Rightarrow B=\dfrac{A+{{A}^{T}}}{2}\]
Now we will apply transpose on both sides.
\[\begin{align}
& \Rightarrow {{B}^{T}}={{\left( \dfrac{A+{{A}^{T}}}{2} \right)}^{T}} \\
& \Rightarrow {{B}^{T}}=\dfrac{{{A}^{T}}+{{\left( {{A}^{T}} \right)}^{T}}}{2} \\
& \Rightarrow {{B}^{T}}=\dfrac{A+{{A}^{T}}}{2} \\
& \Rightarrow {{B}^{T}}=B \\
\end{align}\]
So, we can say that B is a symmetric matrix.
\[\Rightarrow B=\left( \dfrac{A-{{A}^{T}}}{2} \right)\]
Now we will apply transpose on both sides.
\[\begin{align}
& \Rightarrow {{B}^{T}}={{\left( \dfrac{A-{{A}^{T}}}{2} \right)}^{T}} \\
& \Rightarrow {{B}^{T}}=\dfrac{{{A}^{T}}-{{\left( {{A}^{T}} \right)}^{T}}}{2} \\
& \Rightarrow {{B}^{T}}=\dfrac{{{A}^{T}}-A}{2} \\
& \Rightarrow {{B}^{T}}=-B \\
\end{align}\]
So, we can say that B is a skew symmetric matrix.
So, we can write a matrix A as the sum of a symmetric matrix and skew-symmetric matrix.
From the question, we were given that
\[A=\left( \begin{matrix}
1 & 2 & 4 \\
6 & 8 & 1 \\
3 & 5 & 7 \\
\end{matrix} \right)\]
We know that transpose of a matrix is obtained by interchanging the rows and columns of matrix A.
So, the transpose of A is
\[\Rightarrow {{A}^{T}}=\left( \begin{matrix}
1 & 6 & 3 \\
2 & 8 & 5 \\
4 & 1 & 7 \\
\end{matrix} \right)\]
We know that the symmetric part of a matrix is equal to \[\dfrac{A+{{A}^{T}}}{2}\].
\[\Rightarrow \dfrac{A+{{A}^{T}}}{2}=\dfrac{\left( \begin{matrix}
1 & 2 & 4 \\
6 & 8 & 1 \\
3 & 5 & 7 \\
\end{matrix} \right)+\left( \begin{matrix}
1 & 6 & 3 \\
2 & 8 & 5 \\
4 & 1 & 7 \\
\end{matrix} \right)}{2}\]
\[\Rightarrow \dfrac{A+{{A}^{T}}}{2}=\dfrac{\left( \begin{matrix}
2 & 8 & 7 \\
8 & 16 & 6 \\
7 & 6 & 14 \\
\end{matrix} \right)}{2}\]
\[\Rightarrow \dfrac{A+{{A}^{T}}}{2}=\left( \begin{matrix}
1 & 6 & \dfrac{7}{2} \\
4 & 8 & 3 \\
\dfrac{7}{2} & 3 & 7 \\
\end{matrix} \right)\]
So, the symmetric part of matrix A is equal to \[\left( \begin{matrix}
1 & 6 & \dfrac{7}{2} \\
4 & 8 & 3 \\
\dfrac{7}{2} & 3 & 7 \\
\end{matrix} \right)\].
We know that the skew-symmetric part of a matrix is equal to \[\dfrac{A-{{A}^{T}}}{2}\].
\[\Rightarrow \dfrac{A-{{A}^{T}}}{2}=\dfrac{\left( \begin{matrix}
1 & 2 & 4 \\
6 & 8 & 1 \\
3 & 5 & 7 \\
\end{matrix} \right)-\left( \begin{matrix}
1 & 6 & 3 \\
2 & 8 & 5 \\
4 & 1 & 7 \\
\end{matrix} \right)}{2}\]
\[\Rightarrow \dfrac{A+{{A}^{T}}}{2}=\dfrac{\left( \begin{matrix}
0 & -4 & 1 \\
4 & 0 & -4 \\
-1 & 4 & 0 \\
\end{matrix} \right)}{2}\]
So, skew-symmetric part of matrix A is equal to \[\dfrac{\left( \begin{matrix}
0 & -4 & 1 \\
4 & 0 & -4 \\
-1 & 4 & 0 \\
\end{matrix} \right)}{2}\].
Note: Some students have a misconception that that a matrix A said to be symmetric if \[A=-{{A}^{T}}\] and that a matrix A said to be skew-symmetric if \[A={{A}^{T}}\]. If this misconception is followed, then the symmetric part of A is \[\dfrac{\left( \begin{matrix}
0 & -4 & 1 \\
4 & 0 & -4 \\
-1 & 4 & 0 \\
\end{matrix} \right)}{2}\] and skew-symmetric part of A is \[\left( \begin{matrix}
1 & 6 & \dfrac{7}{2} \\
4 & 8 & 3 \\
\dfrac{7}{2} & 3 & 7 \\
\end{matrix} \right)\]. This is a very big mistake. So, students should have a clear view on symmetric and non-symmetric matrices.
Complete step-by-step answer:
We know that a matrix can be written as the sum of symmetric matrix and skew-symmetric matrix.
We can rewrite a matrix A as follows:
\[A=\dfrac{A}{2}+\dfrac{A}{2}\]
Now add and subtract \[\dfrac{{{A}^{T}}}{2}\]on R.H.S where \[{{A}^{T}}\]is transpose of matrix A.
\[\Rightarrow A=\dfrac{A+{{A}^{T}}}{2}+\dfrac{A-{{A}^{T}}}{2}\]
Let us assume \[\dfrac{A+{{A}^{T}}}{2}\] as B and \[\dfrac{A-{{A}^{T}}}{2}\]as C.
\[\Rightarrow A=B+C....(1)\]
We know that a matrix A is said to be symmetric if \[A={{A}^{T}}\].
We know that
\[\Rightarrow B=\dfrac{A+{{A}^{T}}}{2}\]
Now we will apply transpose on both sides.
\[\begin{align}
& \Rightarrow {{B}^{T}}={{\left( \dfrac{A+{{A}^{T}}}{2} \right)}^{T}} \\
& \Rightarrow {{B}^{T}}=\dfrac{{{A}^{T}}+{{\left( {{A}^{T}} \right)}^{T}}}{2} \\
& \Rightarrow {{B}^{T}}=\dfrac{A+{{A}^{T}}}{2} \\
& \Rightarrow {{B}^{T}}=B \\
\end{align}\]
So, we can say that B is a symmetric matrix.
\[\Rightarrow B=\left( \dfrac{A-{{A}^{T}}}{2} \right)\]
Now we will apply transpose on both sides.
\[\begin{align}
& \Rightarrow {{B}^{T}}={{\left( \dfrac{A-{{A}^{T}}}{2} \right)}^{T}} \\
& \Rightarrow {{B}^{T}}=\dfrac{{{A}^{T}}-{{\left( {{A}^{T}} \right)}^{T}}}{2} \\
& \Rightarrow {{B}^{T}}=\dfrac{{{A}^{T}}-A}{2} \\
& \Rightarrow {{B}^{T}}=-B \\
\end{align}\]
So, we can say that B is a skew symmetric matrix.
So, we can write a matrix A as the sum of a symmetric matrix and skew-symmetric matrix.
From the question, we were given that
\[A=\left( \begin{matrix}
1 & 2 & 4 \\
6 & 8 & 1 \\
3 & 5 & 7 \\
\end{matrix} \right)\]
We know that transpose of a matrix is obtained by interchanging the rows and columns of matrix A.
So, the transpose of A is
\[\Rightarrow {{A}^{T}}=\left( \begin{matrix}
1 & 6 & 3 \\
2 & 8 & 5 \\
4 & 1 & 7 \\
\end{matrix} \right)\]
We know that the symmetric part of a matrix is equal to \[\dfrac{A+{{A}^{T}}}{2}\].
\[\Rightarrow \dfrac{A+{{A}^{T}}}{2}=\dfrac{\left( \begin{matrix}
1 & 2 & 4 \\
6 & 8 & 1 \\
3 & 5 & 7 \\
\end{matrix} \right)+\left( \begin{matrix}
1 & 6 & 3 \\
2 & 8 & 5 \\
4 & 1 & 7 \\
\end{matrix} \right)}{2}\]
\[\Rightarrow \dfrac{A+{{A}^{T}}}{2}=\dfrac{\left( \begin{matrix}
2 & 8 & 7 \\
8 & 16 & 6 \\
7 & 6 & 14 \\
\end{matrix} \right)}{2}\]
\[\Rightarrow \dfrac{A+{{A}^{T}}}{2}=\left( \begin{matrix}
1 & 6 & \dfrac{7}{2} \\
4 & 8 & 3 \\
\dfrac{7}{2} & 3 & 7 \\
\end{matrix} \right)\]
So, the symmetric part of matrix A is equal to \[\left( \begin{matrix}
1 & 6 & \dfrac{7}{2} \\
4 & 8 & 3 \\
\dfrac{7}{2} & 3 & 7 \\
\end{matrix} \right)\].
We know that the skew-symmetric part of a matrix is equal to \[\dfrac{A-{{A}^{T}}}{2}\].
\[\Rightarrow \dfrac{A-{{A}^{T}}}{2}=\dfrac{\left( \begin{matrix}
1 & 2 & 4 \\
6 & 8 & 1 \\
3 & 5 & 7 \\
\end{matrix} \right)-\left( \begin{matrix}
1 & 6 & 3 \\
2 & 8 & 5 \\
4 & 1 & 7 \\
\end{matrix} \right)}{2}\]
\[\Rightarrow \dfrac{A+{{A}^{T}}}{2}=\dfrac{\left( \begin{matrix}
0 & -4 & 1 \\
4 & 0 & -4 \\
-1 & 4 & 0 \\
\end{matrix} \right)}{2}\]
So, skew-symmetric part of matrix A is equal to \[\dfrac{\left( \begin{matrix}
0 & -4 & 1 \\
4 & 0 & -4 \\
-1 & 4 & 0 \\
\end{matrix} \right)}{2}\].
Note: Some students have a misconception that that a matrix A said to be symmetric if \[A=-{{A}^{T}}\] and that a matrix A said to be skew-symmetric if \[A={{A}^{T}}\]. If this misconception is followed, then the symmetric part of A is \[\dfrac{\left( \begin{matrix}
0 & -4 & 1 \\
4 & 0 & -4 \\
-1 & 4 & 0 \\
\end{matrix} \right)}{2}\] and skew-symmetric part of A is \[\left( \begin{matrix}
1 & 6 & \dfrac{7}{2} \\
4 & 8 & 3 \\
\dfrac{7}{2} & 3 & 7 \\
\end{matrix} \right)\]. This is a very big mistake. So, students should have a clear view on symmetric and non-symmetric matrices.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

