
Find the sum of all positive integers x such that
$\dfrac{{{x}^{3}}-x+120}{\left( x-1 \right)\left( x+1 \right)}$ is an integer.
Answer
589.2k+ views
Hint: To solve this question, we will first separate both terms $\dfrac{{{x}^{3}}-x}{\left( x-1 \right)\left( x+1 \right)}\text{ and }\dfrac{120}{\left( x-1 \right)\left( x+1 \right)}$ and then factorize the first term using identity $\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a+b \right)\left( a-b \right)$
Then, we will assume the left term as integer and see all values of x possible. Finally we will add all those obtained values of x which are positive integers.
Complete step-by-step answer:
We have $\mathbb{Z}$ denote set of integers and we need
\[\dfrac{{{x}^{3}}-x+120}{\left( x-1 \right)\left( x+1 \right)}\] to be an integer
\[\dfrac{{{x}^{3}}-x+120}{\left( x-1 \right)\left( x+1 \right)}\in \mathbb{Z}\] where x is also an integer.
Let us simplify the given term and take x common in the numerator.
\[\begin{align}
& \dfrac{x\left( {{x}^{2}}-1 \right)+120}{\left( x-1 \right)\left( x+1 \right)}\in \mathbb{Z}\text{ where x}\in \mathbb{Z} \\
& \dfrac{x\left( {{x}^{2}}-1 \right)}{\left( x-1 \right)\left( x+1 \right)}+\dfrac{120}{\left( x-1 \right)\left( x+1 \right)}\in \mathbb{Z} \\
\end{align}\]
Now, using the identity $\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a+b \right)\left( a-b \right)$ in above we get:
\[\dfrac{x\left( x-1 \right)\left( x+1 \right)}{\left( x-1 \right)\left( x+1 \right)}+\dfrac{120}{\left( x-1 \right)\left( x+1 \right)}\in \mathbb{Z}\]
Cancelling the term $\left( x-1 \right)\left( x+1 \right)$ from above equation, we get:
\[x+\dfrac{120}{\left( x-1 \right)\left( x+1 \right)}\in \mathbb{Z}\]
Now, as x is also an integer and sum of two integers is also an integer.
For above term to be integer we should have \[\dfrac{120}{\left( x-1 \right)\left( x+1 \right)}\in \mathbb{Z}\]
Now, $\dfrac{120}{\left( x-1 \right)\left( x+1 \right)}$ is an integer if and only if the term $\left( x-1 \right)\left( x+1 \right)$ is a factor of 120, so that then there is no term left in denominator.
From above stated identity we have $\left( x-1 \right)\left( x+1 \right)={{x}^{2}}-1$
${{x}^{2}}-1$ is a factor of 120.
The factors of 120 are \[\to 1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120.\]
${{x}^{2}}-1$ has possible values are \[\to 1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120.\]
Calculating x separately for all of them we have:
Case I ${{x}^{2}}-1=1$
\[\begin{align}
& {{x}^{2}}-1=1 \\
& {{x}^{2}}=2 \\
& x=\pm \sqrt{2} \\
\end{align}\]
But $\pm \sqrt{2}$ are not integers, so case I is not possible.
Case II ${{x}^{2}}-1=2$
\[\begin{align}
& {{x}^{2}}=2+1 \\
& {{x}^{2}}=3 \\
& x=\pm \sqrt{3} \\
\end{align}\]
Again not integer, so not possible.
Case III ${{x}^{2}}-1=3$
\[\begin{align}
& {{x}^{2}}=3+1 \\
& {{x}^{2}}=4 \\
& x=\pm 2 \\
\end{align}\]
Now $\pm 2$ both are integers but we only need positive integers.
\[x=2\text{ is valid }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
Case IV ${{x}^{2}}-1=4$
\[\begin{align}
& {{x}^{2}}=4+1 \\
& {{x}^{2}}=5 \\
& x=\pm \sqrt{5} \\
\end{align}\]
Not an integer, so not possible.
Case V ${{x}^{2}}-1=5$
\[\begin{align}
& {{x}^{2}}=5+1 \\
& {{x}^{2}}=6 \\
& x=\pm \sqrt{6} \\
\end{align}\]
It is not an integer, hence not possible.
Case VI ${{x}^{2}}-1=6$
\[\begin{align}
& {{x}^{2}}=6+1 \\
& {{x}^{2}}=7 \\
& x=\pm \sqrt{7} \\
\end{align}\]
It is not an integer, so it is not possible.
Case VII ${{x}^{2}}-1=8$
\[\begin{align}
& {{x}^{2}}=8+1 \\
& {{x}^{2}}=9 \\
& x=\pm 3 \\
\end{align}\]
All integers but we only need positive.
\[x=3\text{ is valid }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)}\]
Case VIII ${{x}^{2}}-1=10$
\[\begin{align}
& {{x}^{2}}=10+1 \\
& {{x}^{2}}=11 \\
& x=\pm \sqrt{11} \\
\end{align}\]
It is not an integer, so it is not possible.
Case IX ${{x}^{2}}-1=12$
\[\begin{align}
& {{x}^{2}}=12+1 \\
& {{x}^{2}}=13 \\
& x=\pm \sqrt{13} \\
\end{align}\]
Not an integer, so it is not possible.
Case X ${{x}^{2}}-1=15$
\[\begin{align}
& {{x}^{2}}=15+1 \\
& {{x}^{2}}=16 \\
& x=\pm 4 \\
\end{align}\]
We only need positive integers.
\[x=4\text{ is valid }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (iii)}\]
Case XI ${{x}^{2}}-1=20$
\[\begin{align}
& {{x}^{2}}=20+1 \\
& {{x}^{2}}=21 \\
& x=\pm \sqrt{21} \\
\end{align}\]
Not integer, hence not possible.
Case XII ${{x}^{2}}-1=24$
\[\begin{align}
& {{x}^{2}}=24+1 \\
& {{x}^{2}}=25 \\
& x=\pm 5 \\
\end{align}\]
We only need positive integers.
\[x=5\text{ is valid }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (iv)}\]
Case XIII ${{x}^{2}}-1=30$
\[\begin{align}
& {{x}^{2}}=30+1 \\
& {{x}^{2}}=31 \\
& x=\pm \sqrt{31} \\
\end{align}\]
It is not an integer, hence it is not possible.
Case XIV ${{x}^{2}}-1=40$
\[\begin{align}
& {{x}^{2}}=40+1 \\
& {{x}^{2}}=41 \\
& x=\pm \sqrt{41} \\
\end{align}\]
Again, we get that it is not an integer and it is not possible.
Case XV ${{x}^{2}}-1=60$
\[\begin{align}
& {{x}^{2}}=60+1 \\
& {{x}^{2}}=61 \\
& x=\pm \sqrt{61} \\
\end{align}\]
Since it is not an integer, we cannot consider it.
Case XVI ${{x}^{2}}-1=120$
\[\begin{align}
& {{x}^{2}}=120+1 \\
& {{x}^{2}}=121 \\
& x=\pm \sqrt{121} \\
\end{align}\]
Not an integer, so not possible.
So from equation (i), (ii), (iii) and (iv) we have all positive integers of x such that $\dfrac{{{x}^{3}}-x+120}{\left( x-1 \right)\left( x+1 \right)}$ an integer are 2, 3, 4, 5.
Sum of all above \[\Rightarrow 2+3+4+5=14\]
Therefore, the sum of all positive integer x such that $\dfrac{{{x}^{3}}-x+120}{\left( x-1 \right)\left( x+1 \right)}$ is an integer is 14.
Note: Students might get confused at the part where only $\dfrac{120}{\left( x-1 \right)\left( x+1 \right)}$ is considered to find all possible values of x and not the whole term $x+\dfrac{120}{\left( x-1 \right)\left( x+1 \right)}$
This is so because the sum and difference of integers is also integer.
For understanding let $x+\dfrac{120}{\left( x-1 \right)\left( x+1 \right)}=t$ where t is an integer, subtracting x from both sides of equation we get:
\[\dfrac{120}{\left( x-1 \right)\left( x+1 \right)}=t-x\]
Now, as t is integer and we need x also integer, so as the difference of integer is integer. Hence, we can directly go for calculating the value of x such that $\dfrac{120}{\left( x-1 \right)\left( x+1 \right)}$ is an integer.
Then, we will assume the left term as integer and see all values of x possible. Finally we will add all those obtained values of x which are positive integers.
Complete step-by-step answer:
We have $\mathbb{Z}$ denote set of integers and we need
\[\dfrac{{{x}^{3}}-x+120}{\left( x-1 \right)\left( x+1 \right)}\] to be an integer
\[\dfrac{{{x}^{3}}-x+120}{\left( x-1 \right)\left( x+1 \right)}\in \mathbb{Z}\] where x is also an integer.
Let us simplify the given term and take x common in the numerator.
\[\begin{align}
& \dfrac{x\left( {{x}^{2}}-1 \right)+120}{\left( x-1 \right)\left( x+1 \right)}\in \mathbb{Z}\text{ where x}\in \mathbb{Z} \\
& \dfrac{x\left( {{x}^{2}}-1 \right)}{\left( x-1 \right)\left( x+1 \right)}+\dfrac{120}{\left( x-1 \right)\left( x+1 \right)}\in \mathbb{Z} \\
\end{align}\]
Now, using the identity $\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a+b \right)\left( a-b \right)$ in above we get:
\[\dfrac{x\left( x-1 \right)\left( x+1 \right)}{\left( x-1 \right)\left( x+1 \right)}+\dfrac{120}{\left( x-1 \right)\left( x+1 \right)}\in \mathbb{Z}\]
Cancelling the term $\left( x-1 \right)\left( x+1 \right)$ from above equation, we get:
\[x+\dfrac{120}{\left( x-1 \right)\left( x+1 \right)}\in \mathbb{Z}\]
Now, as x is also an integer and sum of two integers is also an integer.
For above term to be integer we should have \[\dfrac{120}{\left( x-1 \right)\left( x+1 \right)}\in \mathbb{Z}\]
Now, $\dfrac{120}{\left( x-1 \right)\left( x+1 \right)}$ is an integer if and only if the term $\left( x-1 \right)\left( x+1 \right)$ is a factor of 120, so that then there is no term left in denominator.
From above stated identity we have $\left( x-1 \right)\left( x+1 \right)={{x}^{2}}-1$
${{x}^{2}}-1$ is a factor of 120.
The factors of 120 are \[\to 1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120.\]
${{x}^{2}}-1$ has possible values are \[\to 1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120.\]
Calculating x separately for all of them we have:
Case I ${{x}^{2}}-1=1$
\[\begin{align}
& {{x}^{2}}-1=1 \\
& {{x}^{2}}=2 \\
& x=\pm \sqrt{2} \\
\end{align}\]
But $\pm \sqrt{2}$ are not integers, so case I is not possible.
Case II ${{x}^{2}}-1=2$
\[\begin{align}
& {{x}^{2}}=2+1 \\
& {{x}^{2}}=3 \\
& x=\pm \sqrt{3} \\
\end{align}\]
Again not integer, so not possible.
Case III ${{x}^{2}}-1=3$
\[\begin{align}
& {{x}^{2}}=3+1 \\
& {{x}^{2}}=4 \\
& x=\pm 2 \\
\end{align}\]
Now $\pm 2$ both are integers but we only need positive integers.
\[x=2\text{ is valid }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
Case IV ${{x}^{2}}-1=4$
\[\begin{align}
& {{x}^{2}}=4+1 \\
& {{x}^{2}}=5 \\
& x=\pm \sqrt{5} \\
\end{align}\]
Not an integer, so not possible.
Case V ${{x}^{2}}-1=5$
\[\begin{align}
& {{x}^{2}}=5+1 \\
& {{x}^{2}}=6 \\
& x=\pm \sqrt{6} \\
\end{align}\]
It is not an integer, hence not possible.
Case VI ${{x}^{2}}-1=6$
\[\begin{align}
& {{x}^{2}}=6+1 \\
& {{x}^{2}}=7 \\
& x=\pm \sqrt{7} \\
\end{align}\]
It is not an integer, so it is not possible.
Case VII ${{x}^{2}}-1=8$
\[\begin{align}
& {{x}^{2}}=8+1 \\
& {{x}^{2}}=9 \\
& x=\pm 3 \\
\end{align}\]
All integers but we only need positive.
\[x=3\text{ is valid }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)}\]
Case VIII ${{x}^{2}}-1=10$
\[\begin{align}
& {{x}^{2}}=10+1 \\
& {{x}^{2}}=11 \\
& x=\pm \sqrt{11} \\
\end{align}\]
It is not an integer, so it is not possible.
Case IX ${{x}^{2}}-1=12$
\[\begin{align}
& {{x}^{2}}=12+1 \\
& {{x}^{2}}=13 \\
& x=\pm \sqrt{13} \\
\end{align}\]
Not an integer, so it is not possible.
Case X ${{x}^{2}}-1=15$
\[\begin{align}
& {{x}^{2}}=15+1 \\
& {{x}^{2}}=16 \\
& x=\pm 4 \\
\end{align}\]
We only need positive integers.
\[x=4\text{ is valid }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (iii)}\]
Case XI ${{x}^{2}}-1=20$
\[\begin{align}
& {{x}^{2}}=20+1 \\
& {{x}^{2}}=21 \\
& x=\pm \sqrt{21} \\
\end{align}\]
Not integer, hence not possible.
Case XII ${{x}^{2}}-1=24$
\[\begin{align}
& {{x}^{2}}=24+1 \\
& {{x}^{2}}=25 \\
& x=\pm 5 \\
\end{align}\]
We only need positive integers.
\[x=5\text{ is valid }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (iv)}\]
Case XIII ${{x}^{2}}-1=30$
\[\begin{align}
& {{x}^{2}}=30+1 \\
& {{x}^{2}}=31 \\
& x=\pm \sqrt{31} \\
\end{align}\]
It is not an integer, hence it is not possible.
Case XIV ${{x}^{2}}-1=40$
\[\begin{align}
& {{x}^{2}}=40+1 \\
& {{x}^{2}}=41 \\
& x=\pm \sqrt{41} \\
\end{align}\]
Again, we get that it is not an integer and it is not possible.
Case XV ${{x}^{2}}-1=60$
\[\begin{align}
& {{x}^{2}}=60+1 \\
& {{x}^{2}}=61 \\
& x=\pm \sqrt{61} \\
\end{align}\]
Since it is not an integer, we cannot consider it.
Case XVI ${{x}^{2}}-1=120$
\[\begin{align}
& {{x}^{2}}=120+1 \\
& {{x}^{2}}=121 \\
& x=\pm \sqrt{121} \\
\end{align}\]
Not an integer, so not possible.
So from equation (i), (ii), (iii) and (iv) we have all positive integers of x such that $\dfrac{{{x}^{3}}-x+120}{\left( x-1 \right)\left( x+1 \right)}$ an integer are 2, 3, 4, 5.
Sum of all above \[\Rightarrow 2+3+4+5=14\]
Therefore, the sum of all positive integer x such that $\dfrac{{{x}^{3}}-x+120}{\left( x-1 \right)\left( x+1 \right)}$ is an integer is 14.
Note: Students might get confused at the part where only $\dfrac{120}{\left( x-1 \right)\left( x+1 \right)}$ is considered to find all possible values of x and not the whole term $x+\dfrac{120}{\left( x-1 \right)\left( x+1 \right)}$
This is so because the sum and difference of integers is also integer.
For understanding let $x+\dfrac{120}{\left( x-1 \right)\left( x+1 \right)}=t$ where t is an integer, subtracting x from both sides of equation we get:
\[\dfrac{120}{\left( x-1 \right)\left( x+1 \right)}=t-x\]
Now, as t is integer and we need x also integer, so as the difference of integer is integer. Hence, we can directly go for calculating the value of x such that $\dfrac{120}{\left( x-1 \right)\left( x+1 \right)}$ is an integer.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

