
Find the sum and the difference of the largest and the smallest four digit numbers.
Answer
521.7k+ views
Hint: There are in total 10 basic digits which help formation of any digit which are 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. The lowest possible 4 digit number must start from 1 and the highest possible 4 digit number must start from 9. Use this concept to get the sum and difference.
Complete step-by-step answer:
The possible digits are (0, 1, 2, 3, 4, 5, 6, 7, 8 and 9)
Now we have to make the smallest and largest four digit numbers.
Now as we know that the number cannot start from zero otherwise the number converts into a three digit number for example (0123 = 123).
So the smallest four digit number starts from 1 and the rest of the terms are filled by the least number which is zero.
So the smallest 4 digit number is = 1000.
Now make the largest 4 digit number.
As we know in the largest 4 digit number all the places can be filled by the largest digit which is nine (9).
So the largest 4 digit number is = 9999.
Now we have to calculate the sum and difference of these two numbers.
$\left( i \right)$ Sum (S)
$ \Rightarrow S = 9999 + 1000 = 10999$
Complete step-by-step answer:
The possible digits are (0, 1, 2, 3, 4, 5, 6, 7, 8 and 9)
Now we have to make the smallest and largest four digit numbers.
Now as we know that the number cannot start from zero otherwise the number converts into a three digit number for example (0123 = 123).
So the smallest four digit number starts from 1 and the rest of the terms are filled by the least number which is zero.
So the smallest 4 digit number is = 1000.
Now make the largest 4 digit number.
As we know in the largest 4 digit number all the places can be filled by the largest digit which is nine (9).
So the largest 4 digit number is = 9999.
Now we have to calculate the sum and difference of these two numbers.
$\left( i \right)$ Sum (S)
$ \Rightarrow S = 9999 + 1000 = 10999$
Therefore, the sum of the largest and smallest four digit numbers is 10999.
$\left( {ii} \right)$ Difference (D)
$ \Rightarrow D = 9999 - 1000 = 8999$
$\left( {ii} \right)$ Difference (D)
$ \Rightarrow D = 9999 - 1000 = 8999$
Therefore, the difference of the largest and smallest four digit numbers is 8999.
Note: If we have to form a 4 digits number then it can never start with 0, although 0 was the smallest of the basic digits than can form any number as 0 in the starting of digits doesn’t add up to the total number of digits while in every rest position it has equal significance as others. The same happens with 0 after the decimal place towards ending, no matter how many zeros we apply after the decimal point at the ending it never counts up.
Note: If we have to form a 4 digits number then it can never start with 0, although 0 was the smallest of the basic digits than can form any number as 0 in the starting of digits doesn’t add up to the total number of digits while in every rest position it has equal significance as others. The same happens with 0 after the decimal place towards ending, no matter how many zeros we apply after the decimal point at the ending it never counts up.
Recently Updated Pages
he place which comes on immediate right of the hundreds class 7 maths CBSE

Granite is found in A Igneous rocks B Sedimentary rocks class 7 social science CBSE

Two numbers are in the ratio 72 If their sum is 54 class 7 maths CBSE

How do you write dfrac120 as a percent class 7 maths CBSE

Simple interest is given by I dfracPTR100 If p Rs900 class 7 maths CBSE

The most important event in the social life of early class 7 social science CBSE

Trending doubts
The singular of lice is louse A Yes B No class 8 english CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

How many ounces are in 500 mL class 8 maths CBSE

Advantages and disadvantages of science

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

What led to the incident of Bloody Sunday in Russia class 8 social science CBSE
