
Find the solution set of the equation below, the equation is:
\[ta{{n}^{-1}}x-co{{t}^{-1}}x=co{{s}^{-1}}\left( 2-x \right)\].
Answer
587.4k+ views
Hint: Take cosine at both the sides of the equation. Then apply the concept that \[\cos \left( s-t \right)=\cos \left( s \right)\cos \left( t \right)+\sin \left( s \right)\sin \left( t \right)\] and also that
\[\begin{align}
& \Rightarrow ta{{n}^{-1}}x=\theta \\
& \Rightarrow \tan \theta =x \\
\end{align}\]
Also, we have:
\[\Rightarrow \cos \left( \theta \right)=\dfrac{\sqrt{1+{{x}^{2}}}}{1+{{x}^{2}}}\]
\[\Rightarrow \sin \,\,\theta =\dfrac{x\sqrt{1+{{x}^{2}}}}{1+{{x}^{2}}}\]
Complete step by step answer:
In the question, we have to solve the given equation \[ta{{n}^{-1}}x-co{{t}^{-1}}x=co{{s}^{-1}}\left( 2-x \right)\].
So, here we will start by taking cosine both the sides of the above equation, to obtain:
\[
\Rightarrow \cos \left( ta{{n}^{-1}}x-co{{t}^{-1}}x \right)=\cos \left( {{\cos }^{-1}}\left( 2-x \right) \right) \\
\Rightarrow \cos \left( ta{{n}^{-1}}x \right)\cos \left( co{{t}^{-1}}x \right)+\sin \left( ta{{n}^{-1}}x \right)\sin \left( co{{t}^{-1}}x \right)=\cos \left( {{\cos }^{-1}}\left( 2-x \right) \right) \\
\]
Because we have: \[\cos \left( s-t \right)=\cos \left( s \right)\cos \left( t \right)+\sin \left( s \right)\sin \left( t \right)\]. Next, we will find the value of
Left hand side \[\cos \left( ta{{n}^{-1}}x \right)\cos \left( co{{t}^{-1}}x \right)+\sin \left( ta{{n}^{-1}}x \right)\sin \left( co{{t}^{-1}}x \right)\]
Now, since we have
\[
\Rightarrow ta{{n}^{-1}}x=\theta \\
\Rightarrow \tan \theta =x \\
\]
So here, we have
\[
\Rightarrow \cos \left( ta{{n}^{-1}}\left( x \right) \right)=\dfrac{\sqrt{1+{{x}^{2}}}}{1+{{x}^{2}}} \\
\Rightarrow \cos \left( {{\cot }^{-1}}\left( x \right) \right)=\dfrac{x\sqrt{1+{{x}^{2}}}}{1+{{x}^{2}}} \\
\Rightarrow \sin \left( ta{{n}^{-1}}\left( x \right) \right)=\dfrac{x\sqrt{1+{{x}^{2}}}}{1+{{x}^{2}}} \\
\Rightarrow \sin \left( {{\cot }^{-1}}\left( x \right) \right)=\dfrac{\sqrt{1+{{x}^{2}}}}{1+{{x}^{2}}} \\
\]
Next, the expression at the left-hand side and right-hand side is solved as shown below:
\[\dfrac{\sqrt{1+{{x}^{2}}}}{1+{{x}^{2}}}\cdot \dfrac{x\sqrt{1+{{x}^{2}}}}{1+{{x}^{2}}}+\dfrac{x\sqrt{1+{{x}^{2}}}}{1+{{x}^{2}}}\cdot \dfrac{\sqrt{1+{{x}^{2}}}}{1+{{x}^{2}}}=2-x\]
Since we have \[\cos \left( {{\cos }^{-1}}\left( 2-x \right) \right)=2-x\]
Now, we will solve it as follows:
\[
\Rightarrow \dfrac{\sqrt{1+{{x}^{2}}}}{1+{{x}^{2}}}\cdot \dfrac{x\sqrt{1+{{x}^{2}}}}{1+{{x}^{2}}}+\dfrac{x\sqrt{1+{{x}^{2}}}}{1+{{x}^{2}}}\cdot \dfrac{\sqrt{1+{{x}^{2}}}}{1+{{x}^{2}}}=2-x \\
\Rightarrow 2{{\left( \sqrt{1+{{x}^{2}}} \right)}^{2}}x=2{{\left( 1+{{x}^{2}} \right)}^{2}}-x{{\left( 1+{{x}^{2}} \right)}^{2}} \\
\Rightarrow 2x+2{{x}^{3}}=2+4{{x}^{2}}+2{{x}^{4}}-x-2{{x}^{3}}-{{x}^{5}} \\
\Rightarrow -{{x}^{5}}+2{{x}^{4}}-4{{x}^{3}}+4{{x}^{2}}-3x+2=0 \\
\Rightarrow -\left( x-1 \right)\left( {{x}^{4}}-{{x}^{3}}+3{{x}^{2}}-x+2 \right)=0 \\
\]
Now here we see that the expression \[\left( {{x}^{4}}-{{x}^{3}}+3{{x}^{2}}-x+2 \right)=0\] has no solution and the second equation is
\[
\Rightarrow \left( x-1 \right)=0 \\
\Rightarrow x=1 \\
\]
So here we will have only one solution and that is at \[x=1\]
Note: Care has to be taken when applying the formula for the expansion form of \[\cos \left( s-t \right)=\cos \left( s \right)\cos \left( t \right)+\sin \left( s \right)\sin \left( t \right)\], we have to take care of the positive and the negative sign. So, this is a bit different from the expansion of \[\sin \left( s-t \right)\]. We have to solve the equation using the squaring of the terms of the equation.
\[\begin{align}
& \Rightarrow ta{{n}^{-1}}x=\theta \\
& \Rightarrow \tan \theta =x \\
\end{align}\]
Also, we have:
\[\Rightarrow \cos \left( \theta \right)=\dfrac{\sqrt{1+{{x}^{2}}}}{1+{{x}^{2}}}\]
\[\Rightarrow \sin \,\,\theta =\dfrac{x\sqrt{1+{{x}^{2}}}}{1+{{x}^{2}}}\]
Complete step by step answer:
In the question, we have to solve the given equation \[ta{{n}^{-1}}x-co{{t}^{-1}}x=co{{s}^{-1}}\left( 2-x \right)\].
So, here we will start by taking cosine both the sides of the above equation, to obtain:
\[
\Rightarrow \cos \left( ta{{n}^{-1}}x-co{{t}^{-1}}x \right)=\cos \left( {{\cos }^{-1}}\left( 2-x \right) \right) \\
\Rightarrow \cos \left( ta{{n}^{-1}}x \right)\cos \left( co{{t}^{-1}}x \right)+\sin \left( ta{{n}^{-1}}x \right)\sin \left( co{{t}^{-1}}x \right)=\cos \left( {{\cos }^{-1}}\left( 2-x \right) \right) \\
\]
Because we have: \[\cos \left( s-t \right)=\cos \left( s \right)\cos \left( t \right)+\sin \left( s \right)\sin \left( t \right)\]. Next, we will find the value of
Left hand side \[\cos \left( ta{{n}^{-1}}x \right)\cos \left( co{{t}^{-1}}x \right)+\sin \left( ta{{n}^{-1}}x \right)\sin \left( co{{t}^{-1}}x \right)\]
Now, since we have
\[
\Rightarrow ta{{n}^{-1}}x=\theta \\
\Rightarrow \tan \theta =x \\
\]
So here, we have
\[
\Rightarrow \cos \left( ta{{n}^{-1}}\left( x \right) \right)=\dfrac{\sqrt{1+{{x}^{2}}}}{1+{{x}^{2}}} \\
\Rightarrow \cos \left( {{\cot }^{-1}}\left( x \right) \right)=\dfrac{x\sqrt{1+{{x}^{2}}}}{1+{{x}^{2}}} \\
\Rightarrow \sin \left( ta{{n}^{-1}}\left( x \right) \right)=\dfrac{x\sqrt{1+{{x}^{2}}}}{1+{{x}^{2}}} \\
\Rightarrow \sin \left( {{\cot }^{-1}}\left( x \right) \right)=\dfrac{\sqrt{1+{{x}^{2}}}}{1+{{x}^{2}}} \\
\]
Next, the expression at the left-hand side and right-hand side is solved as shown below:
\[\dfrac{\sqrt{1+{{x}^{2}}}}{1+{{x}^{2}}}\cdot \dfrac{x\sqrt{1+{{x}^{2}}}}{1+{{x}^{2}}}+\dfrac{x\sqrt{1+{{x}^{2}}}}{1+{{x}^{2}}}\cdot \dfrac{\sqrt{1+{{x}^{2}}}}{1+{{x}^{2}}}=2-x\]
Since we have \[\cos \left( {{\cos }^{-1}}\left( 2-x \right) \right)=2-x\]
Now, we will solve it as follows:
\[
\Rightarrow \dfrac{\sqrt{1+{{x}^{2}}}}{1+{{x}^{2}}}\cdot \dfrac{x\sqrt{1+{{x}^{2}}}}{1+{{x}^{2}}}+\dfrac{x\sqrt{1+{{x}^{2}}}}{1+{{x}^{2}}}\cdot \dfrac{\sqrt{1+{{x}^{2}}}}{1+{{x}^{2}}}=2-x \\
\Rightarrow 2{{\left( \sqrt{1+{{x}^{2}}} \right)}^{2}}x=2{{\left( 1+{{x}^{2}} \right)}^{2}}-x{{\left( 1+{{x}^{2}} \right)}^{2}} \\
\Rightarrow 2x+2{{x}^{3}}=2+4{{x}^{2}}+2{{x}^{4}}-x-2{{x}^{3}}-{{x}^{5}} \\
\Rightarrow -{{x}^{5}}+2{{x}^{4}}-4{{x}^{3}}+4{{x}^{2}}-3x+2=0 \\
\Rightarrow -\left( x-1 \right)\left( {{x}^{4}}-{{x}^{3}}+3{{x}^{2}}-x+2 \right)=0 \\
\]
Now here we see that the expression \[\left( {{x}^{4}}-{{x}^{3}}+3{{x}^{2}}-x+2 \right)=0\] has no solution and the second equation is
\[
\Rightarrow \left( x-1 \right)=0 \\
\Rightarrow x=1 \\
\]
So here we will have only one solution and that is at \[x=1\]
Note: Care has to be taken when applying the formula for the expansion form of \[\cos \left( s-t \right)=\cos \left( s \right)\cos \left( t \right)+\sin \left( s \right)\sin \left( t \right)\], we have to take care of the positive and the negative sign. So, this is a bit different from the expansion of \[\sin \left( s-t \right)\]. We have to solve the equation using the squaring of the terms of the equation.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

