
Find the solution of the integral $\int {\dfrac{1}{{{{\sin }^4}x + {{\cos }^4}x}}} dx$?
Answer
499.5k+ views
Hint: We have to integrate $\dfrac{1}{{{{\sin }^4}x + {{\cos }^4}x}}$ with respect to $'x'$. Let us assume the value of $\int {\dfrac{1}{{{{\sin }^4}x + {{\cos }^4}x}}} dx$ is equal to $I$. We will simplify the integrand by dividing the numerator and denominator by ${\cos ^4}x$. We also know the tangent function is the ratio of sin function to cosine function. After simplification, we will use the substitution method and we put the final answer in terms of $x$ only.
Complete step-by-step solution:
Given $\int {\dfrac{1}{{{{\sin }^4}x + {{\cos }^4}x}}} dx$
Let $I = \int {\dfrac{1}{{{{\sin }^4}x + {{\cos }^4}x}}} dx$
On dividing numerator and denominator by ${\cos ^4}x$, we get
$ \Rightarrow I = \int {\dfrac{{\dfrac{1}{{{{\cos }^4}x}}}}{{\dfrac{{{{\sin }^4}x + {{\cos }^4}x}}{{{{\cos }^4}x}}}}} dx$
Splitting the terms in denominator, we get
$ \Rightarrow I = \int {\dfrac{{\dfrac{1}{{{{\cos }^4}x}}}}{{\dfrac{{{{\sin }^4}x}}{{{{\cos }^4}x}} + \dfrac{{{{\cos }^4}x}}{{{{\cos }^4}x}}}}} dx$
As we know, $\dfrac{{\sin x}}{{\cos x}} = \tan x$. So, $\dfrac{{{{\sin }^4}x}}{{{{\cos }^4}x}} = {\tan ^4}x$ and $\dfrac{1}{{{{\cos }^4}x}} = {\sec ^4}x$
$ \Rightarrow I = \int {\dfrac{{{{\sec }^4}x}}{{{{\tan }^4}x + 1}}} dx$
Put ${\sec ^4}x$ as ${\sec ^2}x.{\sec ^2}x$
$ \Rightarrow I = \int {\dfrac{{{{\sec }^2}x.{{\sec }^2}x}}{{{{\tan }^4}x + 1}}} dx$
Put ${\sec ^2}x = 1 + {\tan ^2}x$ (identity)
$ \Rightarrow I = \int {\left\{ {\dfrac{{1 + {{\tan }^2}x}}{{1 + {{\tan }^4}x}}} \right\}} {\sec ^2}xdx$
Now to simplify thus easily we use substitution method:
Let’s put $\tan x = t$, then differentiating we have
$ \Rightarrow {\sec ^2}xdx = dt$ (As we know $\dfrac{d}{{dx}}\left( {\tan x} \right) = {\sec ^2}x$)
Then above integral becomes
$I = \int {\dfrac{{\left( {1 + {t^2}} \right)}}{{1 + {t^4}}}} dt$
Divide numerator and denominator by ${t^2}$
$I = \int {\dfrac{{\dfrac{1}{{{t^2}}} + \dfrac{{{t^2}}}{{{t^2}}}}}{{\dfrac{1}{{{t^2}}} + \dfrac{{{t^4}}}{{{t^2}}}}}} dt$
It can also be written as:
$I = \int {\dfrac{{\dfrac{1}{{{t^2}}} + 1}}{{\dfrac{1}{{{t^2}}} + {t^2}}}} dt$
\[ \Leftrightarrow I = \int {\dfrac{{1 + \dfrac{1}{{{t^2}}}}}{{{t^2} + \dfrac{1}{{{t^2}}}}}} dt\]
To make the denominator a complete square we add and subtract $2$.
\[ \Rightarrow I = \int {\dfrac{{1 + \dfrac{1}{{{t^2}}}}}{{{t^2} + \dfrac{1}{{{t^2}}} - 2 + 2}}} dt\]
Write \[{t^2} + \dfrac{1}{{{t^2}}} - 2\] as \[{\left( {t - \dfrac{1}{t}} \right)^2}\]
\[ \Rightarrow I = \int {\dfrac{{\left( {1 + \dfrac{1}{{{t^2}}}} \right)dt}}{{{{\left( {t - \dfrac{1}{t}} \right)}^2} + {{\left( {\sqrt 2 } \right)}^2}}}} \]
Let $t - \dfrac{1}{t} = v$ , then differentiating we have
$ \Rightarrow \left( {1 + \dfrac{1}{{{t^2}}}} \right)dt = dv$
Then above integral becomes
$ \Rightarrow I = \int {\dfrac{{dv}}{{{v^2} + {{\left( {\sqrt 2 } \right)}^2}}}} $
As we know, $\int {\dfrac{{dx}}{{{x^2} + {a^2}}}} = \dfrac{1}{a}{\tan ^{ - 1}}\dfrac{x}{a} + C$
Putting $x = v$ and $a = v$ , we get
$ \Rightarrow I = \dfrac{1}{{\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{v}{{\sqrt 2 }}} \right) + C$
But $t - \dfrac{1}{t} = v$.
$\therefore v = \dfrac{{{t^2} - 1}}{t}$
Substitute value of $v$ in the above integral
$ \Rightarrow I = \dfrac{1}{{\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{{{t^2} - 1}}{{\sqrt 2 t}}} \right) + C$
But we have substituted $t = \tan x$ , then we have
$ \Rightarrow I = \dfrac{1}{{\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{{{{\tan }^2}x - 1}}{{\sqrt 2 \tan x}}} \right) + C$
Where $C$ is the arbitrary constant called constant of integration.
Thus, the integration of $\dfrac{1}{{{{\sin }^4}x + {{\cos }^4}x}}$ is $ = \dfrac{1}{{\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{{{{\tan }^2}x - 1}}{{\sqrt 2 \tan x}}} \right) + C$ , where $C$ is the integration constant.
Note: We have indefinite integral that is why we added integration. If we have a definite integral we do not add integration constant. We know the integration formulas which yield inverse trigonometric functions:
(i). $\int {\dfrac{{dx}}{{\sqrt {{a^2} - {x^2}} }}} = {\sin ^{ - 1}}\dfrac{x}{a} + C$
(ii). $\int {\dfrac{{dx}}{{{x^2} + {a^2}}}} = \dfrac{1}{a}{\tan ^{ - 1}}\dfrac{x}{a} + C$
(iii). $\int {\dfrac{{dx}}{{x\sqrt {{x^2} - {a^2}} }}} = \dfrac{1}{a}{\sec ^{ - 1}}\dfrac{x}{a} + C$
We use them according to the given problem.
Complete step-by-step solution:
Given $\int {\dfrac{1}{{{{\sin }^4}x + {{\cos }^4}x}}} dx$
Let $I = \int {\dfrac{1}{{{{\sin }^4}x + {{\cos }^4}x}}} dx$
On dividing numerator and denominator by ${\cos ^4}x$, we get
$ \Rightarrow I = \int {\dfrac{{\dfrac{1}{{{{\cos }^4}x}}}}{{\dfrac{{{{\sin }^4}x + {{\cos }^4}x}}{{{{\cos }^4}x}}}}} dx$
Splitting the terms in denominator, we get
$ \Rightarrow I = \int {\dfrac{{\dfrac{1}{{{{\cos }^4}x}}}}{{\dfrac{{{{\sin }^4}x}}{{{{\cos }^4}x}} + \dfrac{{{{\cos }^4}x}}{{{{\cos }^4}x}}}}} dx$
As we know, $\dfrac{{\sin x}}{{\cos x}} = \tan x$. So, $\dfrac{{{{\sin }^4}x}}{{{{\cos }^4}x}} = {\tan ^4}x$ and $\dfrac{1}{{{{\cos }^4}x}} = {\sec ^4}x$
$ \Rightarrow I = \int {\dfrac{{{{\sec }^4}x}}{{{{\tan }^4}x + 1}}} dx$
Put ${\sec ^4}x$ as ${\sec ^2}x.{\sec ^2}x$
$ \Rightarrow I = \int {\dfrac{{{{\sec }^2}x.{{\sec }^2}x}}{{{{\tan }^4}x + 1}}} dx$
Put ${\sec ^2}x = 1 + {\tan ^2}x$ (identity)
$ \Rightarrow I = \int {\left\{ {\dfrac{{1 + {{\tan }^2}x}}{{1 + {{\tan }^4}x}}} \right\}} {\sec ^2}xdx$
Now to simplify thus easily we use substitution method:
Let’s put $\tan x = t$, then differentiating we have
$ \Rightarrow {\sec ^2}xdx = dt$ (As we know $\dfrac{d}{{dx}}\left( {\tan x} \right) = {\sec ^2}x$)
Then above integral becomes
$I = \int {\dfrac{{\left( {1 + {t^2}} \right)}}{{1 + {t^4}}}} dt$
Divide numerator and denominator by ${t^2}$
$I = \int {\dfrac{{\dfrac{1}{{{t^2}}} + \dfrac{{{t^2}}}{{{t^2}}}}}{{\dfrac{1}{{{t^2}}} + \dfrac{{{t^4}}}{{{t^2}}}}}} dt$
It can also be written as:
$I = \int {\dfrac{{\dfrac{1}{{{t^2}}} + 1}}{{\dfrac{1}{{{t^2}}} + {t^2}}}} dt$
\[ \Leftrightarrow I = \int {\dfrac{{1 + \dfrac{1}{{{t^2}}}}}{{{t^2} + \dfrac{1}{{{t^2}}}}}} dt\]
To make the denominator a complete square we add and subtract $2$.
\[ \Rightarrow I = \int {\dfrac{{1 + \dfrac{1}{{{t^2}}}}}{{{t^2} + \dfrac{1}{{{t^2}}} - 2 + 2}}} dt\]
Write \[{t^2} + \dfrac{1}{{{t^2}}} - 2\] as \[{\left( {t - \dfrac{1}{t}} \right)^2}\]
\[ \Rightarrow I = \int {\dfrac{{\left( {1 + \dfrac{1}{{{t^2}}}} \right)dt}}{{{{\left( {t - \dfrac{1}{t}} \right)}^2} + {{\left( {\sqrt 2 } \right)}^2}}}} \]
Let $t - \dfrac{1}{t} = v$ , then differentiating we have
$ \Rightarrow \left( {1 + \dfrac{1}{{{t^2}}}} \right)dt = dv$
Then above integral becomes
$ \Rightarrow I = \int {\dfrac{{dv}}{{{v^2} + {{\left( {\sqrt 2 } \right)}^2}}}} $
As we know, $\int {\dfrac{{dx}}{{{x^2} + {a^2}}}} = \dfrac{1}{a}{\tan ^{ - 1}}\dfrac{x}{a} + C$
Putting $x = v$ and $a = v$ , we get
$ \Rightarrow I = \dfrac{1}{{\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{v}{{\sqrt 2 }}} \right) + C$
But $t - \dfrac{1}{t} = v$.
$\therefore v = \dfrac{{{t^2} - 1}}{t}$
Substitute value of $v$ in the above integral
$ \Rightarrow I = \dfrac{1}{{\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{{{t^2} - 1}}{{\sqrt 2 t}}} \right) + C$
But we have substituted $t = \tan x$ , then we have
$ \Rightarrow I = \dfrac{1}{{\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{{{{\tan }^2}x - 1}}{{\sqrt 2 \tan x}}} \right) + C$
Where $C$ is the arbitrary constant called constant of integration.
Thus, the integration of $\dfrac{1}{{{{\sin }^4}x + {{\cos }^4}x}}$ is $ = \dfrac{1}{{\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{{{{\tan }^2}x - 1}}{{\sqrt 2 \tan x}}} \right) + C$ , where $C$ is the integration constant.
Note: We have indefinite integral that is why we added integration. If we have a definite integral we do not add integration constant. We know the integration formulas which yield inverse trigonometric functions:
(i). $\int {\dfrac{{dx}}{{\sqrt {{a^2} - {x^2}} }}} = {\sin ^{ - 1}}\dfrac{x}{a} + C$
(ii). $\int {\dfrac{{dx}}{{{x^2} + {a^2}}}} = \dfrac{1}{a}{\tan ^{ - 1}}\dfrac{x}{a} + C$
(iii). $\int {\dfrac{{dx}}{{x\sqrt {{x^2} - {a^2}} }}} = \dfrac{1}{a}{\sec ^{ - 1}}\dfrac{x}{a} + C$
We use them according to the given problem.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

