
Find the solution of the differential equation $\dfrac{dy}{dx}=\dfrac{xy}{{{x}^{2}}+{{y}^{2}}}$.
Answer
493.2k+ views
Hint: We first cross multiplies the given expression $\dfrac{dy}{dx}=\dfrac{xy}{{{x}^{2}}+{{y}^{2}}}$. Then we interchange the terms and divide with ${{y}^{3}}$ to find the differential form of \[\dfrac{x}{y}\]. We then integrate the expression of \[\dfrac{dy}{y}=\dfrac{x}{y}d\left( \dfrac{x}{y} \right)\]. We simplify the integration to find the solution.
Complete step by step answer:
We first cross multiplies the given expression $\dfrac{dy}{dx}=\dfrac{xy}{{{x}^{2}}+{{y}^{2}}}$.
We get ${{x}^{2}}dy+{{y}^{2}}dy=xydx$. Changing sides, we get \[{{y}^{2}}dy=xydx-{{x}^{2}}dy\].
We take $x$ common on the right side and get
\[{{y}^{2}}dy=xydx-{{x}^{2}}dy \\
\Rightarrow {{y}^{2}}dy=x\left( ydx-xdy \right) \\ \]
We now divide with ${{y}^{3}}$ both sides to get
\[\dfrac{{{y}^{2}}dy}{{{y}^{3}}}=\dfrac{x\left( ydx-xdy \right)}{{{y}^{3}}} \\
\Rightarrow \dfrac{dy}{y}=\dfrac{x}{y}\times \dfrac{ydx-xdy}{{{y}^{2}}} \\ \]
We now take the term \[\dfrac{x}{y}\] and find its differential form.
$\dfrac{d\left( \dfrac{x}{y} \right)}{dx}=\dfrac{y-x\dfrac{dy}{dx}}{{{y}^{2}}} \\
\Rightarrow d\left( \dfrac{x}{y} \right)=\dfrac{ydx-xdy}{{{y}^{2}}} \\ $
We can write
\[\dfrac{dy}{y}=\dfrac{x}{y}\times \dfrac{ydx-xdy}{{{y}^{2}}} \\
\Rightarrow \dfrac{dy}{y}=\dfrac{x}{y}\times d\left( \dfrac{x}{y} \right) \\ \]
Now we take the integration non both sides
\[\int{\dfrac{dy}{y}}=\int{\dfrac{x}{y}d\left( \dfrac{x}{y} \right)}+c\]
We know the integration form \[\int{\dfrac{dm}{m}}=\log \left| m \right|+c\] and \[\int{{{m}^{n}}dm}=\dfrac{{{m}^{n+1}}}{n+1}+c\].
\[\int{\dfrac{dy}{y}}=\int{\dfrac{x}{y}d\left( \dfrac{x}{y} \right)}+c \\
\Rightarrow \log \left| y \right|=\dfrac{{{x}^{2}}}{2{{y}^{2}}}+c \\
\Rightarrow 2\log \left| y \right|=\dfrac{{{x}^{2}}}{{{y}^{2}}}+k \\ \]
We took $k=2c$. Both k and c are constants.
We now apply the logarithmic formula of \[a\log b=\log {{b}^{a}}\].
\[2\log \left| y \right|=\dfrac{{{x}^{2}}}{{{y}^{2}}}+k \\
\Rightarrow \log {{y}^{2}}=\dfrac{{{x}^{2}}}{{{y}^{2}}}+k \\
\Rightarrow {{y}^{2}}={{e}^{\dfrac{{{x}^{2}}}{{{y}^{2}}}+k}}={{e}^{\dfrac{{{x}^{2}}}{{{y}^{2}}}}}{{e}^{k}} \\
\Rightarrow {{y}^{2}}=K{{e}^{\dfrac{{{x}^{2}}}{{{y}^{2}}}}} \\ \]
We again took $K={{e}^{k}}$. K is constant.
The simplified solution of the differential equation $\dfrac{dy}{dx}=\dfrac{xy}{{{x}^{2}}+{{y}^{2}}}$ is \[{{y}^{2}}=K{{e}^{\dfrac{{{x}^{2}}}{{{y}^{2}}}}}\].
Note:We can also take the equation in the form of $\dfrac{y}{x}$ as we take the variable $\dfrac{y}{x}=v$. Differentiating with respect to the term $x$, we get $\dfrac{dy}{dx}=v+x\dfrac{dv}{dx}$.
We replace the values in the differential form and get
$\dfrac{dy}{dx}=\dfrac{xy}{{{x}^{2}}+{{y}^{2}}} \\
\Rightarrow \dfrac{dy}{dx}=v+x\dfrac{dv}{dx}=\dfrac{\dfrac{y}{x}}{1+{{\left( \dfrac{y}{x} \right)}^{2}}}=\dfrac{v}{1+{{v}^{2}}} \\
\Rightarrow x\dfrac{dv}{dx}=\dfrac{v}{1+{{v}^{2}}}-v=\dfrac{-{{v}^{3}}}{1+{{v}^{2}}} \\
\Rightarrow \dfrac{1+{{v}^{2}}}{{{v}^{3}}}dv=\dfrac{dx}{x} \\
$
We integrate the equation to get the same solution of \[{{y}^{2}}=K{{e}^{\dfrac{{{x}^{2}}}{{{y}^{2}}}}}\].
Complete step by step answer:
We first cross multiplies the given expression $\dfrac{dy}{dx}=\dfrac{xy}{{{x}^{2}}+{{y}^{2}}}$.
We get ${{x}^{2}}dy+{{y}^{2}}dy=xydx$. Changing sides, we get \[{{y}^{2}}dy=xydx-{{x}^{2}}dy\].
We take $x$ common on the right side and get
\[{{y}^{2}}dy=xydx-{{x}^{2}}dy \\
\Rightarrow {{y}^{2}}dy=x\left( ydx-xdy \right) \\ \]
We now divide with ${{y}^{3}}$ both sides to get
\[\dfrac{{{y}^{2}}dy}{{{y}^{3}}}=\dfrac{x\left( ydx-xdy \right)}{{{y}^{3}}} \\
\Rightarrow \dfrac{dy}{y}=\dfrac{x}{y}\times \dfrac{ydx-xdy}{{{y}^{2}}} \\ \]
We now take the term \[\dfrac{x}{y}\] and find its differential form.
$\dfrac{d\left( \dfrac{x}{y} \right)}{dx}=\dfrac{y-x\dfrac{dy}{dx}}{{{y}^{2}}} \\
\Rightarrow d\left( \dfrac{x}{y} \right)=\dfrac{ydx-xdy}{{{y}^{2}}} \\ $
We can write
\[\dfrac{dy}{y}=\dfrac{x}{y}\times \dfrac{ydx-xdy}{{{y}^{2}}} \\
\Rightarrow \dfrac{dy}{y}=\dfrac{x}{y}\times d\left( \dfrac{x}{y} \right) \\ \]
Now we take the integration non both sides
\[\int{\dfrac{dy}{y}}=\int{\dfrac{x}{y}d\left( \dfrac{x}{y} \right)}+c\]
We know the integration form \[\int{\dfrac{dm}{m}}=\log \left| m \right|+c\] and \[\int{{{m}^{n}}dm}=\dfrac{{{m}^{n+1}}}{n+1}+c\].
\[\int{\dfrac{dy}{y}}=\int{\dfrac{x}{y}d\left( \dfrac{x}{y} \right)}+c \\
\Rightarrow \log \left| y \right|=\dfrac{{{x}^{2}}}{2{{y}^{2}}}+c \\
\Rightarrow 2\log \left| y \right|=\dfrac{{{x}^{2}}}{{{y}^{2}}}+k \\ \]
We took $k=2c$. Both k and c are constants.
We now apply the logarithmic formula of \[a\log b=\log {{b}^{a}}\].
\[2\log \left| y \right|=\dfrac{{{x}^{2}}}{{{y}^{2}}}+k \\
\Rightarrow \log {{y}^{2}}=\dfrac{{{x}^{2}}}{{{y}^{2}}}+k \\
\Rightarrow {{y}^{2}}={{e}^{\dfrac{{{x}^{2}}}{{{y}^{2}}}+k}}={{e}^{\dfrac{{{x}^{2}}}{{{y}^{2}}}}}{{e}^{k}} \\
\Rightarrow {{y}^{2}}=K{{e}^{\dfrac{{{x}^{2}}}{{{y}^{2}}}}} \\ \]
We again took $K={{e}^{k}}$. K is constant.
The simplified solution of the differential equation $\dfrac{dy}{dx}=\dfrac{xy}{{{x}^{2}}+{{y}^{2}}}$ is \[{{y}^{2}}=K{{e}^{\dfrac{{{x}^{2}}}{{{y}^{2}}}}}\].
Note:We can also take the equation in the form of $\dfrac{y}{x}$ as we take the variable $\dfrac{y}{x}=v$. Differentiating with respect to the term $x$, we get $\dfrac{dy}{dx}=v+x\dfrac{dv}{dx}$.
We replace the values in the differential form and get
$\dfrac{dy}{dx}=\dfrac{xy}{{{x}^{2}}+{{y}^{2}}} \\
\Rightarrow \dfrac{dy}{dx}=v+x\dfrac{dv}{dx}=\dfrac{\dfrac{y}{x}}{1+{{\left( \dfrac{y}{x} \right)}^{2}}}=\dfrac{v}{1+{{v}^{2}}} \\
\Rightarrow x\dfrac{dv}{dx}=\dfrac{v}{1+{{v}^{2}}}-v=\dfrac{-{{v}^{3}}}{1+{{v}^{2}}} \\
\Rightarrow \dfrac{1+{{v}^{2}}}{{{v}^{3}}}dv=\dfrac{dx}{x} \\
$
We integrate the equation to get the same solution of \[{{y}^{2}}=K{{e}^{\dfrac{{{x}^{2}}}{{{y}^{2}}}}}\].
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

