
Find the smallest positive integer value of n for which \[\dfrac{{{{\left( {1 + i} \right)}^n}}}{{{{\left( {1 - i} \right)}^{n - 2}}}}\] is a real number.
Answer
591.6k+ views
Hint: Complex numbers are the numbers which are expressed in the form of \[a + ib\] where ‘i’ is an imaginary number called iota and has the value of \[\left( {\surd - 1} \right).\] For example, \[2 + 3i\] is a complex number, where \[2\] is a real number and \[3i\] is an imaginary number. Therefore, the combination of both the real number and imaginary number is a complex number.
The main application of these numbers is to represent periodic motions such as water waves, alternating current, light waves, etc., which relies on sine or cosine waves etc. There are certain formulas which are used to solve the problems based on complex numbers.
Rationalization is the property, when denominator and numerator is multiplied by opposite sign of denominator with same power such that the rationalized term gets cancelled.
\[{\left( {1 - i} \right)^{n - 2}}\] is rationalized with \[{\left( {1 + i} \right)^{n - 2}}\] in numerator and denominator.
Complete step-by-step answer:
\[ \Rightarrow \dfrac{{{{\left( {1 + i} \right)}^n}}}{{{{\left( {1 - i} \right)}^{n - 2}}}}\]
Rationalizing
\[ \Rightarrow \dfrac{{{{\left( {1 + i} \right)}^n}}}{{{{\left( {1 - i} \right)}^{n - 2}}}} \times \dfrac{{{{\left( {1 + i} \right)}^{n - 2}}}}{{{{\left( {1 + i} \right)}^{n - 2}}}}\] [After rationalization]
\[ \Rightarrow \dfrac{{{{\left( {1 + i} \right)}^{n + n - 2}}}}{{{{\left[ {\left( {1 + i} \right)\left( {1 - i} \right)} \right]}^{n - 2}}}}\]
Using concept of $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$
We get,
\[ \Rightarrow \dfrac{{{{\left( {1 + i} \right)}^{2n - 2}}}}{{{{\left( {1 - {i^2}} \right)}^{n - 2}}}}\]
\[ \Rightarrow \dfrac{{{{\left( {1 + i} \right)}^{2\left( {n - 1} \right)}}}}{{{{\left( {1 - \left( { - 1} \right)} \right)}^{n - 2}}}}\], As we know \[\left[ \begin{gathered}
i = \sqrt { - 1} ,\,\,{i^2} = - 1 \\
{i^3} = - i,\,\,\,{i^4}\, = \,\,1 \\
\end{gathered} \right]\]
\[ \Rightarrow \dfrac{{{{\left( {1 + i} \right)}^{2\left( {n - 1} \right)}}}}{{{{\left( 2 \right)}^{n - 2}}}}\]
Simplify
\[ \Rightarrow \dfrac{{{{\left( {{{\left( {1 + i} \right)}^2}} \right)}^{\left( {n - 1} \right)}}}}{{{{\left( 2 \right)}^{n - 2}}}}\]
\[ \Rightarrow \dfrac{{{{\left( {1 + {i^2} + 2i} \right)}^{n - 1}}}}{{{2^{n - 2}}}}\]
Solve square of whole term
\[ \Rightarrow \dfrac{{{{\left( {1 + \left( { - 1} \right) + 2i} \right)}^{n - 1}}}}{{{2^{n - 2}}}}\]
\[ \Rightarrow \dfrac{{{{\left( {2i} \right)}^{n - 1}}}}{{{2^{n - 2}}}}\]
\[ \Rightarrow \dfrac{{{{\left( 2 \right)}^{n - 1}}{i^{n - 1}}}}{{{2^{n - 2}}}}\]
Solve
\[ \Rightarrow {2^{n + ( - n) + 2}}{i^{n - 1}}\]
\[ \Rightarrow {2^1}{i^{n - 1}}\]
To make identity real
\[n - 1 = 0\]
\[n = 1\]
So, the smallest positive integer for n is \[1\].
Note: In cases where you have a fraction with a radical in the denominator, you can use a technique called rationalizing a denominator to eliminate the radical. The point of rationalizing the denominator is to make it easier to understand what the quantity really is, by removing radicals from the denominator.
The main application of these numbers is to represent periodic motions such as water waves, alternating current, light waves, etc., which relies on sine or cosine waves etc. There are certain formulas which are used to solve the problems based on complex numbers.
Rationalization is the property, when denominator and numerator is multiplied by opposite sign of denominator with same power such that the rationalized term gets cancelled.
\[{\left( {1 - i} \right)^{n - 2}}\] is rationalized with \[{\left( {1 + i} \right)^{n - 2}}\] in numerator and denominator.
Complete step-by-step answer:
\[ \Rightarrow \dfrac{{{{\left( {1 + i} \right)}^n}}}{{{{\left( {1 - i} \right)}^{n - 2}}}}\]
Rationalizing
\[ \Rightarrow \dfrac{{{{\left( {1 + i} \right)}^n}}}{{{{\left( {1 - i} \right)}^{n - 2}}}} \times \dfrac{{{{\left( {1 + i} \right)}^{n - 2}}}}{{{{\left( {1 + i} \right)}^{n - 2}}}}\] [After rationalization]
\[ \Rightarrow \dfrac{{{{\left( {1 + i} \right)}^{n + n - 2}}}}{{{{\left[ {\left( {1 + i} \right)\left( {1 - i} \right)} \right]}^{n - 2}}}}\]
Using concept of $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$
We get,
\[ \Rightarrow \dfrac{{{{\left( {1 + i} \right)}^{2n - 2}}}}{{{{\left( {1 - {i^2}} \right)}^{n - 2}}}}\]
\[ \Rightarrow \dfrac{{{{\left( {1 + i} \right)}^{2\left( {n - 1} \right)}}}}{{{{\left( {1 - \left( { - 1} \right)} \right)}^{n - 2}}}}\], As we know \[\left[ \begin{gathered}
i = \sqrt { - 1} ,\,\,{i^2} = - 1 \\
{i^3} = - i,\,\,\,{i^4}\, = \,\,1 \\
\end{gathered} \right]\]
\[ \Rightarrow \dfrac{{{{\left( {1 + i} \right)}^{2\left( {n - 1} \right)}}}}{{{{\left( 2 \right)}^{n - 2}}}}\]
Simplify
\[ \Rightarrow \dfrac{{{{\left( {{{\left( {1 + i} \right)}^2}} \right)}^{\left( {n - 1} \right)}}}}{{{{\left( 2 \right)}^{n - 2}}}}\]
\[ \Rightarrow \dfrac{{{{\left( {1 + {i^2} + 2i} \right)}^{n - 1}}}}{{{2^{n - 2}}}}\]
Solve square of whole term
\[ \Rightarrow \dfrac{{{{\left( {1 + \left( { - 1} \right) + 2i} \right)}^{n - 1}}}}{{{2^{n - 2}}}}\]
\[ \Rightarrow \dfrac{{{{\left( {2i} \right)}^{n - 1}}}}{{{2^{n - 2}}}}\]
\[ \Rightarrow \dfrac{{{{\left( 2 \right)}^{n - 1}}{i^{n - 1}}}}{{{2^{n - 2}}}}\]
Solve
\[ \Rightarrow {2^{n + ( - n) + 2}}{i^{n - 1}}\]
\[ \Rightarrow {2^1}{i^{n - 1}}\]
To make identity real
\[n - 1 = 0\]
\[n = 1\]
So, the smallest positive integer for n is \[1\].
Note: In cases where you have a fraction with a radical in the denominator, you can use a technique called rationalizing a denominator to eliminate the radical. The point of rationalizing the denominator is to make it easier to understand what the quantity really is, by removing radicals from the denominator.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

